-
Notifications
You must be signed in to change notification settings - Fork 203
/
sgemv.cu
201 lines (179 loc) · 6.75 KB
/
sgemv.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#include <vector>
#include <algorithm>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cuda_bf16.h>
#include <cuda_fp8.h>
#include <torch/types.h>
#include <torch/extension.h>
#define WARP_SIZE 32
#define INT4(value) (reinterpret_cast<int4*>(&(value))[0])
#define FLOAT4(value) (reinterpret_cast<float4*>(&(value))[0])
// -------------------------------------- FP32 --------------------------------------
// Warp Reduce Sum
template<const int kWarpSize = WARP_SIZE>
__device__ __forceinline__ float warp_reduce_sum_f32(float val) {
#pragma unroll
for (int mask = kWarpSize >> 1; mask >= 1; mask >>= 1) {
val += __shfl_xor_sync(0xffffffff, val, mask);
}
return val;
}
// SGEMV: Warp SGEMV K32
// 假设K为32的倍数,每个warp负责一行
// grid(M/4), block(32,4) blockDim.x=32=K, blockDim.y=4
// a: MxK, x: Kx1, y: Mx1, compute: y = a * x
__global__ void sgemv_k32_f32_kernel(float* a, float* x, float* y, int M, int K) {
int tx = threadIdx.x; // 0~31
int ty = threadIdx.y; // 0~4
int bx = blockIdx.x; // 0~M/4
int lane = tx % WARP_SIZE; // 0~31
int m = bx * blockDim.y + ty; // (0~M/4) * 4 + (0~3)
if (m < M) {
float sum = 0.0f;
int NUM_WARPS = (K + WARP_SIZE - 1) / WARP_SIZE;
#pragma unroll
for (int w = 0; w < NUM_WARPS; ++w) {
// 若NUM_WARPS>=2,先将当前行的数据累加到第一个warp中
int k = w * WARP_SIZE + lane;
sum += a[m * K + k] * x[k];
}
sum = warp_reduce_sum_f32<WARP_SIZE>(sum);
if (lane == 0) y[m] = sum;
}
}
// SGEMV: Warp SGEMV K128 + Vec4
// 假设K为128的倍数 float4
// grid(M/4), block(32,4) blockDim.x=32=K, blockDim.y=4
// a: MxK, x: Kx1, y: Mx1, compute: y = a * x
__global__ void sgemv_k128_f32x4_kernel(float* a, float* x, float* y, int M, int K) {
// 每个线程负责4个元素,一个warp覆盖128个元素
int tx = threadIdx.x; // 0~31
int ty = threadIdx.y; // 0~3
int bx = blockIdx.x; // 0~M/4
int lane = tx % WARP_SIZE; // 0~31
int m = blockDim.y * bx + ty; // (0~M/4) * 4 + (0~3)
if (m < M) {
float sum = 0.0f;
// process 4*WARP_SIZE elements per warp.
int NUM_WARPS = (((K + WARP_SIZE - 1) / WARP_SIZE) + 4 - 1) / 4;
#pragma unroll
for (int w = 0; w < NUM_WARPS; ++w) {
int k = (w * WARP_SIZE + lane) * 4;
float4 reg_x = FLOAT4(x[k]);
float4 reg_a = FLOAT4(a[m * K + k]);
sum += (reg_a.x * reg_x.x + reg_a.y * reg_x.y
+ reg_a.z * reg_x.z + reg_a.w * reg_x.w);
}
sum = warp_reduce_sum_f32<WARP_SIZE>(sum);
if(lane == 0) y[m] = sum;
}
}
// SGEMV: Warp SGEMV K16
// 假设K为16 < 32,每个warp负责2行,每行有16个元素
// NUM_THREADS=128, NUM_WARPS=NUM_THREADS/WARP_SIZE;
// NUM_ROWS=NUM_WARPS * ROW_PER_WARP, grid(M/NUM_ROWS), block(32,NUM_WARPS)
// a: MxK, x: Kx1, y: Mx1, compute: y = a * x
template<const int ROW_PER_WARP = 2>
__global__ void sgemv_k16_f32_kernel(float* A, float* x, float* y, int M, int K) {
constexpr int K_WARP_SIZE = (WARP_SIZE + ROW_PER_WARP - 1) / ROW_PER_WARP;
int tx = threadIdx.x; // 0~31
int ty = threadIdx.y; // 0~NUM_WARPS
int bx = blockIdx.x; // 0~M/NUM_ROWS (NUM_ROWS=NUM_WARPS * ROW_PER_WARP)
int lane = tx % WARP_SIZE; // 0~31
int k = lane % K_WARP_SIZE; // 0~15
// gloabl row of a: MxK and y:Mx1, blockDim.y=NUM_WARPS
int m = (blockDim.y * bx + ty) * ROW_PER_WARP + lane / K_WARP_SIZE;
if (m < M) {
float sum = A[m * K + k] * x[k];
sum = warp_reduce_sum_f32<K_WARP_SIZE>(sum);
// 注意是k == 0,而不是lane == 0
if(k == 0) y[m] = sum;
}
}
// --------------------- PyTorch bindings for custom kernel -----------------------
#define STRINGFY(str) #str
#define TORCH_BINDING_COMMON_EXTENSION(func) \
m.def(STRINGFY(func), &func, STRINGFY(func));
#define CHECK_TORCH_TENSOR_DTYPE(T, th_type) \
if(((T).options().dtype() != (th_type))) { \
std::cout << "Tensor Info:" << (T).options() << std::endl; \
throw std::runtime_error("values must be "#th_type); \
}
#define CHECK_TORCH_TENSOR_SHAPE(T, S0, S1) \
if (((T).size(0) != (S0)) || ((T).size(1) != (S1))) { \
throw std::runtime_error("Tensor size mismatch!"); \
}
#define ASSERT_K_IS_MULTIBLE_OF(V) \
if (K % (V) != 0) { throw std::runtime_error("K must be multiple of "#V); }
#define ASSERT_K_IS_EQUAL_OF(V) \
if (K != (V)) { throw std::runtime_error("K must be "#V);}
void sgemv_k32_f32(torch::Tensor a, torch::Tensor x, torch::Tensor y) {
CHECK_TORCH_TENSOR_DTYPE(a, torch::kFloat32)
CHECK_TORCH_TENSOR_DTYPE(x, torch::kFloat32)
CHECK_TORCH_TENSOR_DTYPE(y, torch::kFloat32)
const int M = a.size(0);
const int K = a.size(1);
CHECK_TORCH_TENSOR_SHAPE(a, M, K)
CHECK_TORCH_TENSOR_SHAPE(x, K, 1)
CHECK_TORCH_TENSOR_SHAPE(y, M, 1)
ASSERT_K_IS_MULTIBLE_OF(32)
dim3 block(32, 4);
dim3 grid((M + 4 - 1) / 4);
sgemv_k32_f32_kernel<<<grid, block>>>(
reinterpret_cast<float*>(a.data_ptr()),
reinterpret_cast<float*>(x.data_ptr()),
reinterpret_cast<float*>(y.data_ptr()),
M, K
);
}
void sgemv_k128_f32x4(torch::Tensor a, torch::Tensor x, torch::Tensor y) {
CHECK_TORCH_TENSOR_DTYPE(a, torch::kFloat32)
CHECK_TORCH_TENSOR_DTYPE(x, torch::kFloat32)
CHECK_TORCH_TENSOR_DTYPE(y, torch::kFloat32)
const int M = a.size(0);
const int K = a.size(1);
CHECK_TORCH_TENSOR_SHAPE(a, M, K)
CHECK_TORCH_TENSOR_SHAPE(x, K, 1)
CHECK_TORCH_TENSOR_SHAPE(y, M, 1)
ASSERT_K_IS_MULTIBLE_OF(128)
dim3 block(32, 4);
dim3 grid((M + 4 - 1) / 4);
sgemv_k128_f32x4_kernel<<<grid, block>>>(
reinterpret_cast<float*>(a.data_ptr()),
reinterpret_cast<float*>(x.data_ptr()),
reinterpret_cast<float*>(y.data_ptr()),
M, K
);
}
void sgemv_k16_f32(torch::Tensor a, torch::Tensor x, torch::Tensor y) {
CHECK_TORCH_TENSOR_DTYPE(a, torch::kFloat32)
CHECK_TORCH_TENSOR_DTYPE(x, torch::kFloat32)
CHECK_TORCH_TENSOR_DTYPE(y, torch::kFloat32)
const int M = a.size(0);
const int K = a.size(1);
CHECK_TORCH_TENSOR_SHAPE(a, M, K)
CHECK_TORCH_TENSOR_SHAPE(x, K, 1)
CHECK_TORCH_TENSOR_SHAPE(y, M, 1)
ASSERT_K_IS_EQUAL_OF(16)
constexpr int NUM_THREADS = 128;
constexpr int ROW_PER_WARP = 2;
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE; // 4
constexpr int NUM_ROWS = NUM_WARPS * ROW_PER_WARP; // 4 * 2 = 8
dim3 block(32, NUM_WARPS);
dim3 grid((M + NUM_ROWS - 1) / NUM_ROWS);
sgemv_k16_f32_kernel<ROW_PER_WARP><<<grid, block>>>(
reinterpret_cast<float*>(a.data_ptr()),
reinterpret_cast<float*>(x.data_ptr()),
reinterpret_cast<float*>(y.data_ptr()),
M, K
);
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
TORCH_BINDING_COMMON_EXTENSION(sgemv_k32_f32)
TORCH_BINDING_COMMON_EXTENSION(sgemv_k128_f32x4)
TORCH_BINDING_COMMON_EXTENSION(sgemv_k16_f32)
}