-
Notifications
You must be signed in to change notification settings - Fork 199
/
2577721d-9ce9-400c-8902-ce95d6fbcf64.txt
2165 lines (2092 loc) · 134 KB
/
2577721d-9ce9-400c-8902-ce95d6fbcf64.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
import contextlib
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
g = g.add(buf, alpha=momentum) if group['nesterov'] else buf
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim))
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
t = torch.arange(seq_len, device=x.device)
freqs = torch.outer(t, self.inv_freq)
self.seq_len_cached = seq_len
self.cos_cached = freqs.cos()
self.sin_cached = freqs.sin()
cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
# apply_rotary_emb(x, cos, sin)
x1, x2 = x.chunk(2, dim=3)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, n_head):
super().__init__()
assert dim % n_head == 0
self.n_head = n_head
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
# value residual lambda
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
# rotary embeddings
self.rotary = Rotary(dim // n_head) # dim // n_head = head_dim
# output projection
self.c_proj = CastedLinear(dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x, vi, block_mask):
B, T = x.size(0), x.size(1) # batch size, sequence length
assert B == 1, "Must use batch size = 1 for FlexAttention"
q = self.c_q(x).view(B, T, self.n_head, -1)
k = self.c_k(x).view(B, T, self.n_head, -1)
v = self.c_v(x).view(B, T, self.n_head, -1)
v = (1 - self.lamb) * v + self.lamb * vi.view_as(v) # @Grad62304977
q, k = norm(q), norm(k) # QK norm suggested by @Grad62304977
q, k = self.rotary(q), self.rotary(k)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config.n_embd, config.n_head)
self.mlp = MLP(config.n_embd)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, vi, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x = x + self.attn(norm(x), vi, block_mask)
x = x + self.mlp(norm(x))
return x
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning
vte = nn.Embedding(config.vocab_size, config.n_embd*12),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = norm(x) # @Grad62304977
x0 = x
vi = self.transformer.vte(idx[None]).chunk(12, dim=-1)
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x = self.transformer.h[i](x, vi[i], x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x = self.transformer.h[self.num_encoder_layers + i](x, vi[self.num_encoder_layers+i], x0, block_mask)
x = norm(x)
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1530 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
T = args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (T * ddp_world_size) == 0
val_steps = args.val_tokens // (T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (ddp_world_size) == 0
train_accumulation_steps = args.batch_size // ddp_world_size
# load tokens
train_loader = DistributedDataLoader(args.input_bin, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight, raw_model.transformer.vte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# Set the attention blocksize for the current step, in chunks of 64. By @fernbear.bsky.social
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
ctx = model.no_sync() if i < train_accumulation_steps else contextlib.nullcontext()
with ctx: # there's no need to sync gradients every accumulation step
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
loss.backward()
train_loss = loss.detach()
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4
nvidia-smi:
Thu Dec 5 01:35:29 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.06 Driver Version: 535.183.06 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA H100 80GB HBM3 On | 00000000:19:00.0 Off | 0 |
| N/A 39C P0 76W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 On | 00000000:3B:00.0 Off | 0 |
| N/A 31C P0 99W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 On | 00000000:4C:00.0 Off | 0 |
| N/A 31C P0 98W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 On | 00000000:5D:00.0 Off | 0 |
| N/A 38C P0 85W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 On | 00000000:9B:00.0 Off | 0 |
| N/A 39C P0 123W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 On | 00000000:BB:00.0 Off | 0 |
| N/A 30C P0 110W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 On | 00000000:CB:00.0 Off | 0 |
| N/A 39C P0 127W / 700W | 41MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 On | 00000000:DB:00.0 Off | 0 |
| N/A 30C P0 115W / 700W | 33MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
+---------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1100000000 across 11 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1530 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1530 train_loss:10.8258 train_time:31947ms step_avg:nanms
step:2/1530 train_loss:10.0697 train_time:32057ms step_avg:nanms
step:3/1530 train_loss:8.3696 train_time:32218ms step_avg:nanms
step:4/1530 train_loss:7.5850 train_time:32380ms step_avg:nanms
step:5/1530 train_loss:7.4726 train_time:32542ms step_avg:nanms
step:6/1530 train_loss:6.9754 train_time:32702ms step_avg:nanms
step:7/1530 train_loss:7.1870 train_time:32862ms step_avg:nanms
step:8/1530 train_loss:6.7258 train_time:33022ms step_avg:nanms
step:9/1530 train_loss:6.5983 train_time:33182ms step_avg:nanms
step:10/1530 train_loss:6.4784 train_time:33344ms step_avg:nanms
step:11/1530 train_loss:6.4280 train_time:114ms step_avg:nanms
step:12/1530 train_loss:6.3271 train_time:274ms step_avg:nanms
step:13/1530 train_loss:6.2857 train_time:434ms step_avg:144.73ms
step:14/1530 train_loss:6.2339 train_time:594ms step_avg:148.49ms
step:15/1530 train_loss:6.2048 train_time:754ms step_avg:150.74ms
step:16/1530 train_loss:6.1200 train_time:914ms step_avg:152.26ms
step:17/1530 train_loss:6.1709 train_time:1073ms step_avg:153.34ms
step:18/1530 train_loss:5.9504 train_time:1233ms step_avg:154.18ms
step:19/1530 train_loss:6.0127 train_time:1393ms step_avg:154.82ms
step:20/1530 train_loss:5.6765 train_time:1554ms step_avg:155.43ms
step:21/1530 train_loss:5.9609 train_time:1713ms step_avg:155.74ms
step:22/1530 train_loss:6.1912 train_time:1873ms step_avg:156.09ms
step:23/1530 train_loss:5.8560 train_time:2034ms step_avg:156.44ms
step:24/1530 train_loss:6.0175 train_time:2193ms step_avg:156.68ms
step:25/1530 train_loss:5.6931 train_time:2354ms step_avg:156.91ms
step:26/1530 train_loss:5.5766 train_time:2514ms step_avg:157.09ms
step:27/1530 train_loss:5.7799 train_time:2674ms step_avg:157.29ms
step:28/1530 train_loss:5.4007 train_time:2834ms step_avg:157.42ms
step:29/1530 train_loss:5.6770 train_time:2994ms step_avg:157.56ms
step:30/1530 train_loss:5.4640 train_time:3154ms step_avg:157.69ms
step:31/1530 train_loss:5.4435 train_time:3314ms step_avg:157.79ms
step:32/1530 train_loss:5.2760 train_time:3473ms step_avg:157.88ms
step:33/1530 train_loss:5.5739 train_time:3634ms step_avg:157.98ms
step:34/1530 train_loss:5.4952 train_time:3793ms step_avg:158.05ms
step:35/1530 train_loss:5.6186 train_time:3954ms step_avg:158.14ms
step:36/1530 train_loss:5.5360 train_time:4114ms step_avg:158.23ms
step:37/1530 train_loss:5.4582 train_time:4273ms step_avg:158.27ms
step:38/1530 train_loss:5.3059 train_time:4433ms step_avg:158.34ms
step:39/1530 train_loss:5.3292 train_time:4593ms step_avg:158.39ms
step:40/1530 train_loss:5.2473 train_time:4754ms step_avg:158.47ms
step:41/1530 train_loss:5.2356 train_time:4913ms step_avg:158.49ms
step:42/1530 train_loss:5.1588 train_time:5073ms step_avg:158.53ms
step:43/1530 train_loss:5.2640 train_time:5234ms step_avg:158.60ms
step:44/1530 train_loss:5.2345 train_time:5394ms step_avg:158.64ms
step:45/1530 train_loss:5.3923 train_time:5555ms step_avg:158.71ms
step:46/1530 train_loss:5.1739 train_time:5714ms step_avg:158.73ms
step:47/1530 train_loss:5.0730 train_time:5874ms step_avg:158.75ms
step:48/1530 train_loss:5.1992 train_time:6034ms step_avg:158.79ms
step:49/1530 train_loss:5.1483 train_time:6194ms step_avg:158.83ms
step:50/1530 train_loss:5.2675 train_time:6354ms step_avg:158.85ms
step:51/1530 train_loss:5.1527 train_time:6514ms step_avg:158.89ms
step:52/1530 train_loss:5.0327 train_time:6674ms step_avg:158.90ms
step:53/1530 train_loss:5.1775 train_time:6834ms step_avg:158.94ms
step:54/1530 train_loss:5.0139 train_time:6993ms step_avg:158.94ms
step:55/1530 train_loss:5.4128 train_time:7153ms step_avg:158.96ms
step:56/1530 train_loss:5.0373 train_time:7313ms step_avg:158.99ms
step:57/1530 train_loss:4.9028 train_time:7473ms step_avg:159.01ms
step:58/1530 train_loss:5.0554 train_time:7634ms step_avg:159.03ms
step:59/1530 train_loss:5.0375 train_time:7793ms step_avg:159.04ms
step:60/1530 train_loss:5.1596 train_time:7954ms step_avg:159.07ms
step:61/1530 train_loss:4.8506 train_time:8114ms step_avg:159.09ms
step:62/1530 train_loss:4.9757 train_time:8274ms step_avg:159.12ms
step:63/1530 train_loss:4.9793 train_time:8435ms step_avg:159.14ms
step:64/1530 train_loss:4.9431 train_time:8595ms step_avg:159.17ms
step:65/1530 train_loss:4.8167 train_time:8756ms step_avg:159.20ms
step:66/1530 train_loss:4.9180 train_time:8915ms step_avg:159.20ms
step:67/1530 train_loss:4.8200 train_time:9075ms step_avg:159.21ms
step:68/1530 train_loss:5.0877 train_time:9235ms step_avg:159.22ms
step:69/1530 train_loss:4.7179 train_time:9394ms step_avg:159.22ms
step:70/1530 train_loss:4.8356 train_time:9555ms step_avg:159.24ms
step:71/1530 train_loss:4.9795 train_time:9714ms step_avg:159.25ms
step:72/1530 train_loss:4.8994 train_time:9874ms step_avg:159.25ms
step:73/1530 train_loss:4.7825 train_time:10034ms step_avg:159.27ms
step:74/1530 train_loss:4.9081 train_time:10193ms step_avg:159.27ms
step:75/1530 train_loss:4.8667 train_time:10354ms step_avg:159.29ms
step:76/1530 train_loss:4.8048 train_time:10513ms step_avg:159.29ms
step:77/1530 train_loss:4.9221 train_time:10674ms step_avg:159.31ms
step:78/1530 train_loss:5.1269 train_time:10834ms step_avg:159.33ms
step:79/1530 train_loss:4.8379 train_time:10994ms step_avg:159.33ms
step:80/1530 train_loss:4.8743 train_time:11155ms step_avg:159.36ms
step:81/1530 train_loss:4.6781 train_time:11315ms step_avg:159.37ms
step:82/1530 train_loss:4.8280 train_time:11475ms step_avg:159.38ms
step:83/1530 train_loss:4.7785 train_time:11637ms step_avg:159.41ms
step:84/1530 train_loss:4.7636 train_time:11798ms step_avg:159.43ms
step:85/1530 train_loss:4.6259 train_time:11958ms step_avg:159.44ms
step:86/1530 train_loss:4.8355 train_time:12118ms step_avg:159.44ms
step:87/1530 train_loss:4.7631 train_time:12277ms step_avg:159.44ms
step:88/1530 train_loss:4.7432 train_time:12436ms step_avg:159.44ms
step:89/1530 train_loss:4.7157 train_time:12596ms step_avg:159.44ms
step:90/1530 train_loss:4.6505 train_time:12757ms step_avg:159.46ms
step:91/1530 train_loss:4.6519 train_time:12917ms step_avg:159.47ms
step:92/1530 train_loss:4.8125 train_time:13077ms step_avg:159.47ms
step:93/1530 train_loss:4.6269 train_time:13237ms step_avg:159.48ms
step:94/1530 train_loss:4.6454 train_time:13397ms step_avg:159.49ms
step:95/1530 train_loss:4.6968 train_time:13558ms step_avg:159.51ms
step:96/1530 train_loss:4.5802 train_time:13717ms step_avg:159.50ms
step:97/1530 train_loss:4.6444 train_time:13878ms step_avg:159.51ms
step:98/1530 train_loss:4.5875 train_time:14038ms step_avg:159.53ms
step:99/1530 train_loss:4.6785 train_time:14198ms step_avg:159.52ms
step:100/1530 train_loss:4.6853 train_time:14358ms step_avg:159.54ms
step:101/1530 train_loss:4.5525 train_time:14518ms step_avg:159.54ms
step:102/1530 train_loss:4.7222 train_time:14677ms step_avg:159.54ms
step:103/1530 train_loss:4.6044 train_time:14836ms step_avg:159.52ms
step:104/1530 train_loss:4.5320 train_time:14996ms step_avg:159.53ms
step:105/1530 train_loss:4.5545 train_time:15156ms step_avg:159.53ms
step:106/1530 train_loss:4.6397 train_time:15317ms step_avg:159.55ms
step:107/1530 train_loss:4.5298 train_time:15477ms step_avg:159.56ms
step:108/1530 train_loss:4.3718 train_time:15638ms step_avg:159.57ms
step:109/1530 train_loss:4.5142 train_time:15798ms step_avg:159.57ms
step:110/1530 train_loss:4.5056 train_time:15957ms step_avg:159.57ms
step:111/1530 train_loss:4.4402 train_time:16117ms step_avg:159.58ms
step:112/1530 train_loss:4.6204 train_time:16277ms step_avg:159.58ms
step:113/1530 train_loss:4.5086 train_time:16438ms step_avg:159.59ms
step:114/1530 train_loss:4.3774 train_time:16598ms step_avg:159.59ms
step:115/1530 train_loss:4.5306 train_time:16761ms step_avg:159.63ms
step:116/1530 train_loss:4.4876 train_time:16926ms step_avg:159.67ms
step:117/1530 train_loss:4.4004 train_time:17089ms step_avg:159.71ms
step:118/1530 train_loss:4.6093 train_time:17254ms step_avg:159.76ms
step:119/1530 train_loss:4.4918 train_time:17417ms step_avg:159.79ms
step:120/1530 train_loss:4.3462 train_time:17580ms step_avg:159.82ms
step:121/1530 train_loss:4.3118 train_time:17745ms step_avg:159.86ms
step:122/1530 train_loss:4.4638 train_time:17908ms step_avg:159.89ms
step:123/1530 train_loss:4.3011 train_time:18072ms step_avg:159.93ms
step:124/1530 train_loss:4.6008 train_time:18237ms step_avg:159.97ms
step:125/1530 train_loss:4.4714 train_time:18401ms step_avg:160.01ms
step:125/1530 val_loss:4.4155 train_time:18448ms step_avg:160.41ms
step:126/1530 train_loss:4.4274 train_time:18566ms step_avg:160.05ms
step:127/1530 train_loss:4.4548 train_time:18731ms step_avg:160.09ms
step:128/1530 train_loss:4.3988 train_time:18895ms step_avg:160.13ms
step:129/1530 train_loss:4.6939 train_time:19059ms step_avg:160.16ms
step:130/1530 train_loss:4.3719 train_time:19222ms step_avg:160.19ms
step:131/1530 train_loss:4.4097 train_time:19385ms step_avg:160.21ms
step:132/1530 train_loss:4.3579 train_time:19548ms step_avg:160.23ms
step:133/1530 train_loss:4.4561 train_time:19713ms step_avg:160.26ms
step:134/1530 train_loss:4.2671 train_time:19876ms step_avg:160.29ms
step:135/1530 train_loss:4.4578 train_time:20040ms step_avg:160.32ms
step:136/1530 train_loss:4.2217 train_time:20203ms step_avg:160.34ms
step:137/1530 train_loss:4.3926 train_time:20366ms step_avg:160.36ms
step:138/1530 train_loss:4.3004 train_time:20529ms step_avg:160.38ms
step:139/1530 train_loss:4.3962 train_time:20693ms step_avg:160.41ms
step:140/1530 train_loss:4.4972 train_time:20857ms step_avg:160.44ms
step:141/1530 train_loss:4.3222 train_time:21021ms step_avg:160.46ms
step:142/1530 train_loss:4.3131 train_time:21185ms step_avg:160.49ms
step:143/1530 train_loss:4.2799 train_time:21348ms step_avg:160.51ms
step:144/1530 train_loss:4.3715 train_time:21512ms step_avg:160.54ms
step:145/1530 train_loss:4.3141 train_time:21675ms step_avg:160.55ms
step:146/1530 train_loss:4.1735 train_time:21839ms step_avg:160.58ms
step:147/1530 train_loss:4.3355 train_time:22003ms step_avg:160.60ms
step:148/1530 train_loss:4.3686 train_time:22166ms step_avg:160.62ms
step:149/1530 train_loss:4.3067 train_time:22331ms step_avg:160.66ms
step:150/1530 train_loss:4.4441 train_time:22495ms step_avg:160.68ms
step:151/1530 train_loss:4.2764 train_time:22659ms step_avg:160.70ms
step:152/1530 train_loss:4.2953 train_time:22824ms step_avg:160.73ms
step:153/1530 train_loss:4.3719 train_time:22988ms step_avg:160.76ms
step:154/1530 train_loss:4.3804 train_time:23152ms step_avg:160.77ms
step:155/1530 train_loss:4.2864 train_time:23315ms step_avg:160.80ms
step:156/1530 train_loss:4.3634 train_time:23479ms step_avg:160.81ms
step:157/1530 train_loss:4.4183 train_time:23643ms step_avg:160.84ms
step:158/1530 train_loss:4.2596 train_time:23806ms step_avg:160.85ms
step:159/1530 train_loss:4.3134 train_time:23970ms step_avg:160.87ms
step:160/1530 train_loss:4.1447 train_time:24134ms step_avg:160.89ms
step:161/1530 train_loss:4.3673 train_time:24297ms step_avg:160.91ms
step:162/1530 train_loss:4.3695 train_time:24460ms step_avg:160.92ms
step:163/1530 train_loss:4.3415 train_time:24625ms step_avg:160.95ms
step:164/1530 train_loss:4.1964 train_time:24790ms step_avg:160.97ms
step:165/1530 train_loss:4.2986 train_time:24953ms step_avg:160.99ms
step:166/1530 train_loss:4.3572 train_time:25118ms step_avg:161.01ms
step:167/1530 train_loss:4.2265 train_time:25281ms step_avg:161.03ms
step:168/1530 train_loss:4.3119 train_time:25445ms step_avg:161.04ms
step:169/1530 train_loss:4.1711 train_time:25610ms step_avg:161.07ms
step:170/1530 train_loss:4.0386 train_time:25773ms step_avg:161.08ms
step:171/1530 train_loss:4.2067 train_time:25937ms step_avg:161.10ms
step:172/1530 train_loss:4.2165 train_time:26100ms step_avg:161.11ms
step:173/1530 train_loss:4.2651 train_time:26263ms step_avg:161.12ms
step:174/1530 train_loss:4.4292 train_time:26425ms step_avg:161.13ms
step:175/1530 train_loss:4.2601 train_time:26588ms step_avg:161.14ms
step:176/1530 train_loss:4.1032 train_time:26751ms step_avg:161.15ms
step:177/1530 train_loss:4.0644 train_time:26915ms step_avg:161.17ms
step:178/1530 train_loss:4.1816 train_time:27078ms step_avg:161.18ms
step:179/1530 train_loss:4.1356 train_time:27241ms step_avg:161.19ms
step:180/1530 train_loss:4.1182 train_time:27404ms step_avg:161.20ms
step:181/1530 train_loss:4.3019 train_time:27566ms step_avg:161.20ms
step:182/1530 train_loss:4.1678 train_time:27729ms step_avg:161.22ms
step:183/1530 train_loss:4.1408 train_time:27892ms step_avg:161.23ms
step:184/1530 train_loss:4.1342 train_time:28054ms step_avg:161.23ms
step:185/1530 train_loss:4.2286 train_time:28217ms step_avg:161.24ms
step:186/1530 train_loss:4.2023 train_time:28380ms step_avg:161.25ms
step:187/1530 train_loss:4.2470 train_time:28542ms step_avg:161.25ms
step:188/1530 train_loss:4.1785 train_time:28839ms step_avg:162.02ms
step:189/1530 train_loss:4.1184 train_time:29172ms step_avg:162.97ms
step:190/1530 train_loss:4.2192 train_time:29337ms step_avg:162.98ms
step:191/1530 train_loss:4.0882 train_time:29500ms step_avg:162.98ms
step:192/1530 train_loss:4.0395 train_time:29662ms step_avg:162.98ms
step:193/1530 train_loss:4.2707 train_time:29825ms step_avg:162.98ms
step:194/1530 train_loss:4.1811 train_time:29987ms step_avg:162.97ms
step:195/1530 train_loss:4.3545 train_time:30151ms step_avg:162.98ms
step:196/1530 train_loss:4.1814 train_time:30314ms step_avg:162.98ms
step:197/1530 train_loss:4.0546 train_time:30477ms step_avg:162.98ms
step:198/1530 train_loss:4.1830 train_time:30640ms step_avg:162.98ms
step:199/1530 train_loss:4.0327 train_time:30803ms step_avg:162.98ms
step:200/1530 train_loss:4.1211 train_time:30964ms step_avg:162.97ms
step:201/1530 train_loss:4.0239 train_time:31129ms step_avg:162.98ms
step:202/1530 train_loss:4.2668 train_time:31292ms step_avg:162.98ms
step:203/1530 train_loss:4.0678 train_time:31454ms step_avg:162.98ms
step:204/1530 train_loss:4.1955 train_time:31617ms step_avg:162.97ms
step:205/1530 train_loss:4.2531 train_time:31780ms step_avg:162.97ms
step:206/1530 train_loss:3.9517 train_time:31941ms step_avg:162.97ms
step:207/1530 train_loss:4.0919 train_time:32104ms step_avg:162.97ms
step:208/1530 train_loss:4.0992 train_time:32267ms step_avg:162.97ms
step:209/1530 train_loss:4.2476 train_time:32430ms step_avg:162.96ms
step:210/1530 train_loss:4.1709 train_time:32594ms step_avg:162.97ms
step:211/1530 train_loss:4.0714 train_time:32756ms step_avg:162.97ms
step:212/1530 train_loss:4.1329 train_time:32919ms step_avg:162.97ms
step:213/1530 train_loss:4.0542 train_time:33081ms step_avg:162.96ms
step:214/1530 train_loss:4.1246 train_time:33243ms step_avg:162.96ms
step:215/1530 train_loss:3.9717 train_time:33407ms step_avg:162.96ms
step:216/1530 train_loss:4.0108 train_time:33571ms step_avg:162.96ms
step:217/1530 train_loss:4.0133 train_time:33734ms step_avg:162.96ms
step:218/1530 train_loss:4.0899 train_time:33896ms step_avg:162.96ms
step:219/1530 train_loss:4.0826 train_time:34059ms step_avg:162.96ms
step:220/1530 train_loss:4.0971 train_time:34222ms step_avg:162.96ms
step:221/1530 train_loss:4.1040 train_time:34385ms step_avg:162.96ms
step:222/1530 train_loss:4.0078 train_time:34547ms step_avg:162.96ms
step:223/1530 train_loss:4.0077 train_time:34711ms step_avg:162.96ms
step:224/1530 train_loss:4.3071 train_time:34873ms step_avg:162.96ms
step:225/1530 train_loss:3.9130 train_time:35038ms step_avg:162.97ms
step:226/1530 train_loss:3.9929 train_time:35201ms step_avg:162.97ms
step:227/1530 train_loss:3.9850 train_time:35363ms step_avg:162.96ms
step:228/1530 train_loss:4.1483 train_time:35528ms step_avg:162.97ms
step:229/1530 train_loss:3.9254 train_time:35694ms step_avg:162.99ms
step:230/1530 train_loss:4.0490 train_time:35860ms step_avg:163.00ms
step:231/1530 train_loss:3.9106 train_time:36026ms step_avg:163.01ms
step:232/1530 train_loss:3.9818 train_time:36192ms step_avg:163.03ms
step:233/1530 train_loss:4.0983 train_time:36357ms step_avg:163.04ms
step:234/1530 train_loss:4.0336 train_time:36524ms step_avg:163.05ms
step:235/1530 train_loss:3.9024 train_time:36689ms step_avg:163.06ms
step:236/1530 train_loss:4.0856 train_time:36855ms step_avg:163.08ms
step:237/1530 train_loss:4.0866 train_time:37022ms step_avg:163.09ms
step:238/1530 train_loss:3.9494 train_time:37189ms step_avg:163.11ms
step:239/1530 train_loss:4.0889 train_time:37355ms step_avg:163.12ms
step:240/1530 train_loss:4.1219 train_time:37521ms step_avg:163.14ms
step:241/1530 train_loss:3.9760 train_time:37686ms step_avg:163.14ms
step:242/1530 train_loss:4.1537 train_time:37853ms step_avg:163.16ms
step:243/1530 train_loss:4.0111 train_time:38020ms step_avg:163.18ms
step:244/1530 train_loss:4.0887 train_time:38186ms step_avg:163.19ms
step:245/1530 train_loss:4.1430 train_time:38352ms step_avg:163.20ms
step:246/1530 train_loss:4.0635 train_time:38518ms step_avg:163.21ms
step:247/1530 train_loss:4.0147 train_time:38683ms step_avg:163.22ms
step:248/1530 train_loss:4.1206 train_time:38847ms step_avg:163.22ms
step:249/1530 train_loss:3.9349 train_time:39014ms step_avg:163.24ms
step:250/1530 train_loss:3.9790 train_time:39179ms step_avg:163.25ms
step:250/1530 val_loss:4.0105 train_time:39227ms step_avg:163.45ms
step:251/1530 train_loss:4.0852 train_time:39346ms step_avg:163.26ms
step:252/1530 train_loss:4.1754 train_time:39514ms step_avg:163.28ms
step:253/1530 train_loss:3.9356 train_time:39682ms step_avg:163.30ms
step:254/1530 train_loss:3.8895 train_time:39847ms step_avg:163.31ms
step:255/1530 train_loss:4.0902 train_time:40012ms step_avg:163.31ms
step:256/1530 train_loss:3.9998 train_time:40180ms step_avg:163.33ms
step:257/1530 train_loss:3.9992 train_time:40346ms step_avg:163.34ms
step:258/1530 train_loss:3.9936 train_time:40511ms step_avg:163.35ms
step:259/1530 train_loss:4.0343 train_time:40678ms step_avg:163.37ms
step:260/1530 train_loss:4.0620 train_time:40845ms step_avg:163.38ms
step:261/1530 train_loss:4.0243 train_time:41011ms step_avg:163.39ms
step:262/1530 train_loss:4.0039 train_time:41178ms step_avg:163.40ms
step:263/1530 train_loss:3.8970 train_time:41343ms step_avg:163.41ms
step:264/1530 train_loss:3.9954 train_time:41509ms step_avg:163.42ms
step:265/1530 train_loss:3.8801 train_time:41675ms step_avg:163.43ms
step:266/1530 train_loss:3.9284 train_time:41842ms step_avg:163.44ms
step:267/1530 train_loss:3.9348 train_time:42009ms step_avg:163.46ms
step:268/1530 train_loss:3.9628 train_time:42174ms step_avg:163.46ms
step:269/1530 train_loss:3.8621 train_time:42340ms step_avg:163.48ms
step:270/1530 train_loss:4.1100 train_time:42507ms step_avg:163.49ms
step:271/1530 train_loss:3.9759 train_time:42673ms step_avg:163.50ms
step:272/1530 train_loss:3.9388 train_time:42839ms step_avg:163.51ms
step:273/1530 train_loss:3.9512 train_time:43004ms step_avg:163.51ms
step:274/1530 train_loss:4.0445 train_time:43172ms step_avg:163.53ms
step:275/1530 train_loss:4.0678 train_time:43338ms step_avg:163.54ms
step:276/1530 train_loss:4.2365 train_time:43504ms step_avg:163.55ms
step:277/1530 train_loss:4.0496 train_time:43671ms step_avg:163.56ms
step:278/1530 train_loss:4.1044 train_time:43837ms step_avg:163.57ms
step:279/1530 train_loss:4.0083 train_time:44003ms step_avg:163.58ms
step:280/1530 train_loss:4.2011 train_time:44171ms step_avg:163.59ms
step:281/1530 train_loss:3.9941 train_time:44336ms step_avg:163.60ms
step:282/1530 train_loss:3.9525 train_time:44503ms step_avg:163.61ms
step:283/1530 train_loss:3.9166 train_time:44668ms step_avg:163.62ms
step:284/1530 train_loss:4.0496 train_time:44834ms step_avg:163.63ms
step:285/1530 train_loss:4.0709 train_time:44999ms step_avg:163.63ms
step:286/1530 train_loss:4.0963 train_time:45165ms step_avg:163.64ms
step:287/1530 train_loss:3.9059 train_time:45329ms step_avg:163.64ms
step:288/1530 train_loss:4.0113 train_time:45494ms step_avg:163.65ms
step:289/1530 train_loss:3.8807 train_time:45660ms step_avg:163.65ms
step:290/1530 train_loss:3.8640 train_time:45824ms step_avg:163.66ms
step:291/1530 train_loss:3.9158 train_time:45989ms step_avg:163.66ms
step:292/1530 train_loss:3.8650 train_time:46155ms step_avg:163.67ms
step:293/1530 train_loss:3.9088 train_time:46320ms step_avg:163.67ms
step:294/1530 train_loss:3.9401 train_time:46485ms step_avg:163.68ms
step:295/1530 train_loss:3.8514 train_time:46650ms step_avg:163.68ms
step:296/1530 train_loss:3.8666 train_time:46815ms step_avg:163.69ms
step:297/1530 train_loss:3.8774 train_time:46981ms step_avg:163.70ms
step:298/1530 train_loss:3.9693 train_time:47145ms step_avg:163.70ms
step:299/1530 train_loss:3.8256 train_time:47310ms step_avg:163.70ms
step:300/1530 train_loss:3.9796 train_time:47475ms step_avg:163.71ms
step:301/1530 train_loss:3.9692 train_time:47641ms step_avg:163.71ms
step:302/1530 train_loss:3.9427 train_time:47805ms step_avg:163.72ms
step:303/1530 train_loss:3.9911 train_time:47971ms step_avg:163.72ms
step:304/1530 train_loss:3.9825 train_time:48137ms step_avg:163.73ms
step:305/1530 train_loss:4.4643 train_time:48302ms step_avg:163.74ms
step:306/1530 train_loss:3.9461 train_time:48467ms step_avg:163.74ms
step:307/1530 train_loss:3.8411 train_time:48632ms step_avg:163.74ms
step:308/1530 train_loss:3.9853 train_time:48796ms step_avg:163.75ms
step:309/1530 train_loss:3.8637 train_time:48962ms step_avg:163.75ms
step:310/1530 train_loss:4.0890 train_time:49126ms step_avg:163.75ms
step:311/1530 train_loss:3.9316 train_time:49290ms step_avg:163.76ms
step:312/1530 train_loss:3.8718 train_time:49454ms step_avg:163.75ms
step:313/1530 train_loss:3.9395 train_time:49620ms step_avg:163.76ms
step:314/1530 train_loss:4.0660 train_time:49785ms step_avg:163.77ms
step:315/1530 train_loss:3.9593 train_time:49950ms step_avg:163.77ms
step:316/1530 train_loss:3.8081 train_time:50115ms step_avg:163.77ms
step:317/1530 train_loss:3.8867 train_time:50281ms step_avg:163.78ms
step:318/1530 train_loss:3.9297 train_time:50446ms step_avg:163.78ms
step:319/1530 train_loss:3.9021 train_time:50610ms step_avg:163.79ms
step:320/1530 train_loss:4.0227 train_time:50777ms step_avg:163.80ms
step:321/1530 train_loss:3.9630 train_time:50941ms step_avg:163.80ms
step:322/1530 train_loss:3.9358 train_time:51107ms step_avg:163.80ms
step:323/1530 train_loss:4.0113 train_time:51271ms step_avg:163.81ms
step:324/1530 train_loss:3.9499 train_time:51437ms step_avg:163.81ms
step:325/1530 train_loss:4.0242 train_time:51602ms step_avg:163.82ms
step:326/1530 train_loss:3.9042 train_time:51768ms step_avg:163.82ms
step:327/1530 train_loss:4.4079 train_time:51934ms step_avg:163.83ms
step:328/1530 train_loss:4.0801 train_time:52098ms step_avg:163.83ms
step:329/1530 train_loss:3.8046 train_time:52264ms step_avg:163.84ms
step:330/1530 train_loss:3.7522 train_time:52429ms step_avg:163.84ms
step:331/1530 train_loss:3.9802 train_time:52593ms step_avg:163.84ms
step:332/1530 train_loss:3.9178 train_time:52760ms step_avg:163.85ms
step:333/1530 train_loss:3.9009 train_time:52924ms step_avg:163.85ms
step:334/1530 train_loss:3.8513 train_time:53089ms step_avg:163.85ms
step:335/1530 train_loss:4.0221 train_time:53254ms step_avg:163.86ms
step:336/1530 train_loss:3.9728 train_time:53419ms step_avg:163.86ms
step:337/1530 train_loss:4.4226 train_time:53584ms step_avg:163.87ms
step:338/1530 train_loss:3.9419 train_time:53750ms step_avg:163.87ms
step:339/1530 train_loss:3.8713 train_time:53916ms step_avg:163.88ms
step:340/1530 train_loss:3.9451 train_time:54081ms step_avg:163.88ms
step:341/1530 train_loss:3.8608 train_time:54247ms step_avg:163.89ms
step:342/1530 train_loss:3.8168 train_time:54414ms step_avg:163.90ms
step:343/1530 train_loss:3.8464 train_time:54583ms step_avg:163.91ms
step:344/1530 train_loss:4.0017 train_time:54750ms step_avg:163.92ms
step:345/1530 train_loss:3.8217 train_time:54919ms step_avg:163.94ms
step:346/1530 train_loss:3.7677 train_time:55086ms step_avg:163.95ms
step:347/1530 train_loss:3.8031 train_time:55255ms step_avg:163.96ms
step:348/1530 train_loss:3.8694 train_time:55423ms step_avg:163.97ms
step:349/1530 train_loss:3.8411 train_time:55590ms step_avg:163.98ms
step:350/1530 train_loss:3.5723 train_time:55761ms step_avg:164.00ms
step:351/1530 train_loss:3.8285 train_time:55928ms step_avg:164.01ms
step:352/1530 train_loss:4.1932 train_time:56095ms step_avg:164.02ms
step:353/1530 train_loss:3.6633 train_time:56263ms step_avg:164.03ms
step:354/1530 train_loss:3.9332 train_time:56430ms step_avg:164.04ms
step:355/1530 train_loss:3.7884 train_time:56599ms step_avg:164.06ms
step:356/1530 train_loss:3.8919 train_time:56767ms step_avg:164.07ms
step:357/1530 train_loss:3.7704 train_time:56936ms step_avg:164.08ms
step:358/1530 train_loss:3.8688 train_time:57104ms step_avg:164.09ms
step:359/1530 train_loss:3.7790 train_time:57273ms step_avg:164.11ms
step:360/1530 train_loss:3.4371 train_time:57443ms step_avg:164.12ms
step:361/1530 train_loss:4.0341 train_time:57612ms step_avg:164.14ms
step:362/1530 train_loss:3.9243 train_time:57781ms step_avg:164.15ms
step:363/1530 train_loss:3.8474 train_time:57947ms step_avg:164.16ms
step:364/1530 train_loss:3.7523 train_time:58116ms step_avg:164.17ms
step:365/1530 train_loss:3.9203 train_time:58284ms step_avg:164.18ms
step:366/1530 train_loss:3.8626 train_time:58451ms step_avg:164.19ms
step:367/1530 train_loss:3.8704 train_time:58619ms step_avg:164.20ms
step:368/1530 train_loss:3.8533 train_time:58786ms step_avg:164.21ms
step:369/1530 train_loss:3.7470 train_time:58954ms step_avg:164.22ms
step:370/1530 train_loss:3.8861 train_time:59121ms step_avg:164.23ms
step:371/1530 train_loss:3.7367 train_time:59289ms step_avg:164.24ms
step:372/1530 train_loss:3.7032 train_time:59457ms step_avg:164.25ms
step:373/1530 train_loss:3.9221 train_time:59624ms step_avg:164.25ms
step:374/1530 train_loss:3.8358 train_time:59792ms step_avg:164.26ms
step:375/1530 train_loss:3.8066 train_time:59961ms step_avg:164.28ms
step:375/1530 val_loss:3.8336 train_time:60009ms step_avg:164.41ms