-
Notifications
You must be signed in to change notification settings - Fork 199
/
949e5cfd-cb9c-48e7-a888-551981582a9b.txt
2165 lines (2092 loc) · 134 KB
/
949e5cfd-cb9c-48e7-a888-551981582a9b.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
import contextlib
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
g = g.add(buf, alpha=momentum) if group['nesterov'] else buf
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim))
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
t = torch.arange(seq_len, device=x.device)
freqs = torch.outer(t, self.inv_freq)
self.seq_len_cached = seq_len
self.cos_cached = freqs.cos()
self.sin_cached = freqs.sin()
cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
# apply_rotary_emb(x, cos, sin)
x1, x2 = x.chunk(2, dim=3)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, n_head):
super().__init__()
assert dim % n_head == 0
self.n_head = n_head
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
# value residual lambda
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
# rotary embeddings
self.rotary = Rotary(dim // n_head) # dim // n_head = head_dim
# output projection
self.c_proj = CastedLinear(dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x, vi, block_mask):
B, T = x.size(0), x.size(1) # batch size, sequence length
assert B == 1, "Must use batch size = 1 for FlexAttention"
q = self.c_q(x).view(B, T, self.n_head, -1)
k = self.c_k(x).view(B, T, self.n_head, -1)
v = self.c_v(x).view(B, T, self.n_head, -1)
v = (1 - self.lamb) * v + self.lamb * vi.view_as(v) # @Grad62304977
q, k = norm(q), norm(k) # QK norm suggested by @Grad62304977
q, k = self.rotary(q), self.rotary(k)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config.n_embd, config.n_head)
self.mlp = MLP(config.n_embd)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, vi, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x = x + self.attn(norm(x), vi, block_mask)
x = x + self.mlp(norm(x))
return x
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning
vte = nn.Embedding(config.vocab_size, config.n_embd*12),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = norm(x) # @Grad62304977
x0 = x
vi = self.transformer.vte(idx[None]).chunk(12, dim=-1)
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x = self.transformer.h[i](x, vi[i], x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x = self.transformer.h[self.num_encoder_layers + i](x, vi[self.num_encoder_layers+i], x0, block_mask)
x = norm(x)
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1530 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
T = args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (T * ddp_world_size) == 0
val_steps = args.val_tokens // (T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (ddp_world_size) == 0
train_accumulation_steps = args.batch_size // ddp_world_size
# load tokens
train_loader = DistributedDataLoader(args.input_bin, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight, raw_model.transformer.vte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# Set the attention blocksize for the current step, in chunks of 64. By @fernbear.bsky.social
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
ctx = model.no_sync() if i < train_accumulation_steps else contextlib.nullcontext()
with ctx: # there's no need to sync gradients every accumulation step
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
loss.backward()
train_loss = loss.detach()
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4
nvidia-smi:
Thu Dec 5 04:25:28 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.06 Driver Version: 535.183.06 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA H100 80GB HBM3 On | 00000000:19:00.0 Off | 0 |
| N/A 38C P0 75W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 On | 00000000:3B:00.0 Off | 0 |
| N/A 30C P0 93W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 On | 00000000:4C:00.0 Off | 0 |
| N/A 31C P0 98W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 On | 00000000:5D:00.0 Off | 0 |
| N/A 38C P0 118W / 700W | 529MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 On | 00000000:9B:00.0 Off | 0 |
| N/A 38C P0 123W / 700W | 529MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 On | 00000000:BB:00.0 Off | 0 |
| N/A 29C P0 110W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 On | 00000000:CB:00.0 Off | 0 |
| N/A 38C P0 127W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 On | 00000000:DB:00.0 Off | 0 |
| N/A 30C P0 118W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
+---------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1100000000 across 11 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1530 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1530 train_loss:10.8258 train_time:31490ms step_avg:nanms
step:2/1530 train_loss:10.0690 train_time:31601ms step_avg:nanms
step:3/1530 train_loss:8.3875 train_time:31763ms step_avg:nanms
step:4/1530 train_loss:7.5837 train_time:31922ms step_avg:nanms
step:5/1530 train_loss:7.4281 train_time:32081ms step_avg:nanms
step:6/1530 train_loss:6.9683 train_time:32242ms step_avg:nanms
step:7/1530 train_loss:7.1835 train_time:32402ms step_avg:nanms
step:8/1530 train_loss:6.7400 train_time:32564ms step_avg:nanms
step:9/1530 train_loss:6.6163 train_time:32724ms step_avg:nanms
step:10/1530 train_loss:6.5031 train_time:32885ms step_avg:nanms
step:11/1530 train_loss:6.4625 train_time:116ms step_avg:nanms
step:12/1530 train_loss:6.3588 train_time:276ms step_avg:nanms
step:13/1530 train_loss:6.2733 train_time:438ms step_avg:146.00ms
step:14/1530 train_loss:6.2395 train_time:598ms step_avg:149.50ms
step:15/1530 train_loss:6.1496 train_time:758ms step_avg:151.67ms
step:16/1530 train_loss:6.1067 train_time:919ms step_avg:153.15ms
step:17/1530 train_loss:6.1546 train_time:1079ms step_avg:154.09ms
step:18/1530 train_loss:5.9596 train_time:1239ms step_avg:154.93ms
step:19/1530 train_loss:5.9613 train_time:1400ms step_avg:155.56ms
step:20/1530 train_loss:5.6988 train_time:1561ms step_avg:156.06ms
step:21/1530 train_loss:5.9488 train_time:1721ms step_avg:156.47ms
step:22/1530 train_loss:6.1583 train_time:1881ms step_avg:156.72ms
step:23/1530 train_loss:5.8352 train_time:2041ms step_avg:157.02ms
step:24/1530 train_loss:6.0114 train_time:2202ms step_avg:157.27ms
step:25/1530 train_loss:5.6587 train_time:2362ms step_avg:157.49ms
step:26/1530 train_loss:5.5734 train_time:2523ms step_avg:157.68ms
step:27/1530 train_loss:5.7556 train_time:2683ms step_avg:157.82ms
step:28/1530 train_loss:5.3900 train_time:2842ms step_avg:157.92ms
step:29/1530 train_loss:5.6507 train_time:3003ms step_avg:158.04ms
step:30/1530 train_loss:5.4643 train_time:3163ms step_avg:158.13ms
step:31/1530 train_loss:5.4288 train_time:3323ms step_avg:158.24ms
step:32/1530 train_loss:5.2781 train_time:3483ms step_avg:158.31ms
step:33/1530 train_loss:5.5711 train_time:3643ms step_avg:158.38ms
step:34/1530 train_loss:5.4920 train_time:3803ms step_avg:158.48ms
step:35/1530 train_loss:5.6010 train_time:3963ms step_avg:158.54ms
step:36/1530 train_loss:5.5247 train_time:4123ms step_avg:158.59ms
step:37/1530 train_loss:5.4304 train_time:4283ms step_avg:158.64ms
step:38/1530 train_loss:5.2911 train_time:4444ms step_avg:158.72ms
step:39/1530 train_loss:5.3087 train_time:4604ms step_avg:158.77ms
step:40/1530 train_loss:5.2498 train_time:4764ms step_avg:158.81ms
step:41/1530 train_loss:5.2525 train_time:4925ms step_avg:158.86ms
step:42/1530 train_loss:5.1634 train_time:5085ms step_avg:158.91ms
step:43/1530 train_loss:5.2734 train_time:5245ms step_avg:158.94ms
step:44/1530 train_loss:5.2223 train_time:5408ms step_avg:159.06ms
step:45/1530 train_loss:5.3691 train_time:5569ms step_avg:159.12ms
step:46/1530 train_loss:5.1470 train_time:5730ms step_avg:159.15ms
step:47/1530 train_loss:5.0536 train_time:5889ms step_avg:159.16ms
step:48/1530 train_loss:5.1910 train_time:6050ms step_avg:159.22ms
step:49/1530 train_loss:5.1482 train_time:6211ms step_avg:159.24ms
step:50/1530 train_loss:5.2562 train_time:6370ms step_avg:159.25ms
step:51/1530 train_loss:5.1330 train_time:6531ms step_avg:159.29ms
step:52/1530 train_loss:5.0180 train_time:6691ms step_avg:159.31ms
step:53/1530 train_loss:5.1609 train_time:6851ms step_avg:159.32ms
step:54/1530 train_loss:5.0112 train_time:7011ms step_avg:159.35ms
step:55/1530 train_loss:5.4154 train_time:7172ms step_avg:159.38ms
step:56/1530 train_loss:5.0098 train_time:7333ms step_avg:159.42ms
step:57/1530 train_loss:4.8852 train_time:7492ms step_avg:159.41ms
step:58/1530 train_loss:5.0417 train_time:7653ms step_avg:159.44ms
step:59/1530 train_loss:5.0164 train_time:7814ms step_avg:159.47ms
step:60/1530 train_loss:5.1376 train_time:7975ms step_avg:159.49ms
step:61/1530 train_loss:4.8457 train_time:8137ms step_avg:159.54ms
step:62/1530 train_loss:4.9618 train_time:8297ms step_avg:159.57ms
step:63/1530 train_loss:4.9641 train_time:8457ms step_avg:159.57ms
step:64/1530 train_loss:4.8991 train_time:8618ms step_avg:159.59ms
step:65/1530 train_loss:4.7994 train_time:8777ms step_avg:159.59ms
step:66/1530 train_loss:4.9319 train_time:8939ms step_avg:159.62ms
step:67/1530 train_loss:4.8454 train_time:9099ms step_avg:159.63ms
step:68/1530 train_loss:5.0901 train_time:9259ms step_avg:159.65ms
step:69/1530 train_loss:4.7127 train_time:9420ms step_avg:159.66ms
step:70/1530 train_loss:4.8325 train_time:9579ms step_avg:159.65ms
step:71/1530 train_loss:4.9634 train_time:9739ms step_avg:159.66ms
step:72/1530 train_loss:4.8894 train_time:9900ms step_avg:159.68ms
step:73/1530 train_loss:4.7692 train_time:10060ms step_avg:159.68ms
step:74/1530 train_loss:4.9169 train_time:10220ms step_avg:159.69ms
step:75/1530 train_loss:4.8912 train_time:10380ms step_avg:159.69ms
step:76/1530 train_loss:4.8175 train_time:10540ms step_avg:159.70ms
step:77/1530 train_loss:4.9199 train_time:10700ms step_avg:159.70ms
step:78/1530 train_loss:5.1357 train_time:10860ms step_avg:159.71ms
step:79/1530 train_loss:4.8173 train_time:11021ms step_avg:159.72ms
step:80/1530 train_loss:4.8751 train_time:11181ms step_avg:159.72ms
step:81/1530 train_loss:4.6699 train_time:11341ms step_avg:159.73ms
step:82/1530 train_loss:4.8377 train_time:11502ms step_avg:159.75ms
step:83/1530 train_loss:4.7992 train_time:11663ms step_avg:159.76ms
step:84/1530 train_loss:4.7806 train_time:11823ms step_avg:159.77ms
step:85/1530 train_loss:4.6229 train_time:11983ms step_avg:159.77ms
step:86/1530 train_loss:4.8341 train_time:12143ms step_avg:159.78ms
step:87/1530 train_loss:4.7638 train_time:12303ms step_avg:159.78ms
step:88/1530 train_loss:4.7494 train_time:12463ms step_avg:159.78ms
step:89/1530 train_loss:4.7073 train_time:12624ms step_avg:159.80ms
step:90/1530 train_loss:4.6429 train_time:12783ms step_avg:159.79ms
step:91/1530 train_loss:4.6359 train_time:12943ms step_avg:159.79ms
step:92/1530 train_loss:4.8076 train_time:13104ms step_avg:159.80ms
step:93/1530 train_loss:4.6263 train_time:13264ms step_avg:159.81ms
step:94/1530 train_loss:4.6372 train_time:13424ms step_avg:159.81ms
step:95/1530 train_loss:4.6918 train_time:13585ms step_avg:159.82ms
step:96/1530 train_loss:4.5908 train_time:13745ms step_avg:159.82ms
step:97/1530 train_loss:4.6570 train_time:13905ms step_avg:159.82ms
step:98/1530 train_loss:4.5961 train_time:14065ms step_avg:159.83ms
step:99/1530 train_loss:4.6769 train_time:14227ms step_avg:159.85ms
step:100/1530 train_loss:4.6822 train_time:14387ms step_avg:159.86ms
step:101/1530 train_loss:4.5425 train_time:14547ms step_avg:159.86ms
step:102/1530 train_loss:4.7053 train_time:14708ms step_avg:159.87ms
step:103/1530 train_loss:4.5808 train_time:14869ms step_avg:159.88ms
step:104/1530 train_loss:4.5503 train_time:15029ms step_avg:159.89ms
step:105/1530 train_loss:4.5633 train_time:15188ms step_avg:159.87ms
step:106/1530 train_loss:4.6302 train_time:15349ms step_avg:159.89ms
step:107/1530 train_loss:4.5168 train_time:15510ms step_avg:159.89ms
step:108/1530 train_loss:4.3719 train_time:15670ms step_avg:159.90ms
step:109/1530 train_loss:4.4906 train_time:15831ms step_avg:159.91ms
step:110/1530 train_loss:4.4896 train_time:15991ms step_avg:159.91ms
step:111/1530 train_loss:4.4254 train_time:16151ms step_avg:159.91ms
step:112/1530 train_loss:4.5916 train_time:16310ms step_avg:159.90ms
step:113/1530 train_loss:4.4904 train_time:16471ms step_avg:159.91ms
step:114/1530 train_loss:4.3584 train_time:16631ms step_avg:159.91ms
step:115/1530 train_loss:4.5084 train_time:16794ms step_avg:159.94ms
step:116/1530 train_loss:4.4652 train_time:16958ms step_avg:159.98ms
step:117/1530 train_loss:4.3574 train_time:17122ms step_avg:160.02ms
step:118/1530 train_loss:4.5875 train_time:17285ms step_avg:160.04ms
step:119/1530 train_loss:4.4542 train_time:17448ms step_avg:160.07ms
step:120/1530 train_loss:4.3313 train_time:17612ms step_avg:160.11ms
step:121/1530 train_loss:4.2911 train_time:17777ms step_avg:160.15ms
step:122/1530 train_loss:4.4455 train_time:17941ms step_avg:160.19ms
step:123/1530 train_loss:4.2814 train_time:18104ms step_avg:160.22ms
step:124/1530 train_loss:4.5802 train_time:18267ms step_avg:160.24ms
step:125/1530 train_loss:4.4479 train_time:18433ms step_avg:160.28ms
step:125/1530 val_loss:4.4037 train_time:18479ms step_avg:160.69ms
step:126/1530 train_loss:4.4187 train_time:18597ms step_avg:160.32ms
step:127/1530 train_loss:4.4447 train_time:18763ms step_avg:160.37ms
step:128/1530 train_loss:4.3765 train_time:18927ms step_avg:160.40ms
step:129/1530 train_loss:4.6730 train_time:19090ms step_avg:160.42ms
step:130/1530 train_loss:4.3537 train_time:19255ms step_avg:160.46ms
step:131/1530 train_loss:4.4015 train_time:19418ms step_avg:160.48ms
step:132/1530 train_loss:4.3476 train_time:19581ms step_avg:160.50ms
step:133/1530 train_loss:4.4416 train_time:19745ms step_avg:160.53ms
step:134/1530 train_loss:4.2528 train_time:19909ms step_avg:160.56ms
step:135/1530 train_loss:4.4429 train_time:20075ms step_avg:160.60ms
step:136/1530 train_loss:4.2171 train_time:20239ms step_avg:160.62ms
step:137/1530 train_loss:4.3678 train_time:20402ms step_avg:160.65ms
step:138/1530 train_loss:4.2715 train_time:20565ms step_avg:160.66ms
step:139/1530 train_loss:4.3679 train_time:20730ms step_avg:160.69ms
step:140/1530 train_loss:4.4679 train_time:20894ms step_avg:160.72ms
step:141/1530 train_loss:4.3085 train_time:21058ms step_avg:160.75ms
step:142/1530 train_loss:4.3001 train_time:21221ms step_avg:160.76ms
step:143/1530 train_loss:4.2419 train_time:21384ms step_avg:160.79ms
step:144/1530 train_loss:4.3559 train_time:21549ms step_avg:160.82ms
step:145/1530 train_loss:4.3099 train_time:21714ms step_avg:160.84ms
step:146/1530 train_loss:4.1833 train_time:21878ms step_avg:160.87ms
step:147/1530 train_loss:4.3309 train_time:22041ms step_avg:160.88ms
step:148/1530 train_loss:4.3534 train_time:22205ms step_avg:160.90ms
step:149/1530 train_loss:4.2974 train_time:22370ms step_avg:160.93ms
step:150/1530 train_loss:4.4392 train_time:22533ms step_avg:160.95ms
step:151/1530 train_loss:4.2607 train_time:22698ms step_avg:160.98ms
step:152/1530 train_loss:4.2597 train_time:22861ms step_avg:160.99ms
step:153/1530 train_loss:4.3623 train_time:23024ms step_avg:161.01ms
step:154/1530 train_loss:4.3610 train_time:23188ms step_avg:161.03ms
step:155/1530 train_loss:4.2512 train_time:23353ms step_avg:161.05ms
step:156/1530 train_loss:4.3412 train_time:23516ms step_avg:161.07ms
step:157/1530 train_loss:4.4107 train_time:23681ms step_avg:161.09ms
step:158/1530 train_loss:4.2382 train_time:23844ms step_avg:161.11ms
step:159/1530 train_loss:4.3016 train_time:24007ms step_avg:161.12ms
step:160/1530 train_loss:4.1113 train_time:24173ms step_avg:161.15ms
step:161/1530 train_loss:4.3385 train_time:24337ms step_avg:161.17ms
step:162/1530 train_loss:4.3570 train_time:24500ms step_avg:161.19ms
step:163/1530 train_loss:4.3332 train_time:24664ms step_avg:161.20ms
step:164/1530 train_loss:4.1767 train_time:24827ms step_avg:161.22ms
step:165/1530 train_loss:4.2790 train_time:24991ms step_avg:161.23ms
step:166/1530 train_loss:4.3368 train_time:25155ms step_avg:161.25ms
step:167/1530 train_loss:4.1942 train_time:25318ms step_avg:161.26ms
step:168/1530 train_loss:4.2847 train_time:25481ms step_avg:161.27ms
step:169/1530 train_loss:4.1612 train_time:25645ms step_avg:161.29ms
step:170/1530 train_loss:4.0287 train_time:25810ms step_avg:161.31ms
step:171/1530 train_loss:4.2070 train_time:25974ms step_avg:161.33ms
step:172/1530 train_loss:4.2021 train_time:26137ms step_avg:161.34ms
step:173/1530 train_loss:4.2633 train_time:26301ms step_avg:161.35ms
step:174/1530 train_loss:4.4082 train_time:26464ms step_avg:161.36ms
step:175/1530 train_loss:4.2324 train_time:26626ms step_avg:161.37ms
step:176/1530 train_loss:4.0778 train_time:26788ms step_avg:161.38ms
step:177/1530 train_loss:4.0552 train_time:26951ms step_avg:161.38ms
step:178/1530 train_loss:4.1746 train_time:27114ms step_avg:161.39ms
step:179/1530 train_loss:4.1202 train_time:27278ms step_avg:161.41ms
step:180/1530 train_loss:4.1021 train_time:27440ms step_avg:161.41ms
step:181/1530 train_loss:4.2872 train_time:27602ms step_avg:161.42ms
step:182/1530 train_loss:4.1490 train_time:27766ms step_avg:161.43ms
step:183/1530 train_loss:4.1203 train_time:27927ms step_avg:161.43ms
step:184/1530 train_loss:4.1227 train_time:28092ms step_avg:161.45ms
step:185/1530 train_loss:4.1990 train_time:28255ms step_avg:161.46ms
step:186/1530 train_loss:4.1682 train_time:28417ms step_avg:161.46ms
step:187/1530 train_loss:4.2310 train_time:28580ms step_avg:161.47ms
step:188/1530 train_loss:4.1565 train_time:28877ms step_avg:162.23ms
step:189/1530 train_loss:4.1121 train_time:29207ms step_avg:163.16ms
step:190/1530 train_loss:4.2039 train_time:29369ms step_avg:163.16ms
step:191/1530 train_loss:4.0656 train_time:29531ms step_avg:163.16ms
step:192/1530 train_loss:4.0223 train_time:29695ms step_avg:163.16ms
step:193/1530 train_loss:4.2347 train_time:29857ms step_avg:163.15ms
step:194/1530 train_loss:4.1675 train_time:30019ms step_avg:163.15ms
step:195/1530 train_loss:4.3463 train_time:30182ms step_avg:163.15ms
step:196/1530 train_loss:4.1704 train_time:30346ms step_avg:163.15ms
step:197/1530 train_loss:4.0448 train_time:30509ms step_avg:163.15ms
step:198/1530 train_loss:4.1744 train_time:30674ms step_avg:163.16ms
step:199/1530 train_loss:4.0263 train_time:30837ms step_avg:163.16ms
step:200/1530 train_loss:4.0997 train_time:31000ms step_avg:163.16ms
step:201/1530 train_loss:4.0174 train_time:31163ms step_avg:163.16ms
step:202/1530 train_loss:4.2564 train_time:31326ms step_avg:163.16ms
step:203/1530 train_loss:4.0725 train_time:31488ms step_avg:163.15ms
step:204/1530 train_loss:4.1876 train_time:31651ms step_avg:163.15ms
step:205/1530 train_loss:4.2418 train_time:31814ms step_avg:163.15ms
step:206/1530 train_loss:3.9348 train_time:31978ms step_avg:163.15ms
step:207/1530 train_loss:4.0736 train_time:32140ms step_avg:163.15ms
step:208/1530 train_loss:4.0902 train_time:32303ms step_avg:163.15ms
step:209/1530 train_loss:4.2218 train_time:32466ms step_avg:163.14ms
step:210/1530 train_loss:4.1591 train_time:32632ms step_avg:163.16ms
step:211/1530 train_loss:4.0484 train_time:32795ms step_avg:163.16ms
step:212/1530 train_loss:4.1044 train_time:32959ms step_avg:163.16ms
step:213/1530 train_loss:4.0415 train_time:33120ms step_avg:163.15ms
step:214/1530 train_loss:4.0994 train_time:33283ms step_avg:163.15ms
step:215/1530 train_loss:3.9445 train_time:33447ms step_avg:163.16ms
step:216/1530 train_loss:3.9900 train_time:33611ms step_avg:163.16ms
step:217/1530 train_loss:3.9996 train_time:33775ms step_avg:163.16ms
step:218/1530 train_loss:4.0777 train_time:33937ms step_avg:163.16ms
step:219/1530 train_loss:4.0678 train_time:34100ms step_avg:163.16ms
step:220/1530 train_loss:4.0736 train_time:34263ms step_avg:163.16ms
step:221/1530 train_loss:4.0743 train_time:34426ms step_avg:163.16ms
step:222/1530 train_loss:3.9933 train_time:34589ms step_avg:163.15ms
step:223/1530 train_loss:3.9884 train_time:34752ms step_avg:163.16ms
step:224/1530 train_loss:4.3055 train_time:34915ms step_avg:163.15ms
step:225/1530 train_loss:3.9040 train_time:35078ms step_avg:163.15ms
step:226/1530 train_loss:3.9822 train_time:35240ms step_avg:163.15ms
step:227/1530 train_loss:3.9711 train_time:35403ms step_avg:163.15ms
step:228/1530 train_loss:4.1305 train_time:35568ms step_avg:163.16ms
step:229/1530 train_loss:3.9106 train_time:35735ms step_avg:163.17ms
step:230/1530 train_loss:4.0281 train_time:35900ms step_avg:163.18ms
step:231/1530 train_loss:3.8969 train_time:36067ms step_avg:163.20ms
step:232/1530 train_loss:3.9533 train_time:36233ms step_avg:163.21ms
step:233/1530 train_loss:4.0756 train_time:36399ms step_avg:163.22ms
step:234/1530 train_loss:4.0209 train_time:36566ms step_avg:163.24ms
step:235/1530 train_loss:3.8950 train_time:36734ms step_avg:163.26ms
step:236/1530 train_loss:4.0695 train_time:36900ms step_avg:163.27ms
step:237/1530 train_loss:4.0686 train_time:37066ms step_avg:163.28ms
step:238/1530 train_loss:3.9296 train_time:37231ms step_avg:163.30ms
step:239/1530 train_loss:4.0704 train_time:37397ms step_avg:163.31ms
step:240/1530 train_loss:4.1019 train_time:37563ms step_avg:163.32ms
step:241/1530 train_loss:3.9510 train_time:37727ms step_avg:163.32ms
step:242/1530 train_loss:4.1383 train_time:37895ms step_avg:163.34ms
step:243/1530 train_loss:4.0032 train_time:38061ms step_avg:163.35ms
step:244/1530 train_loss:4.0655 train_time:38227ms step_avg:163.36ms
step:245/1530 train_loss:4.1349 train_time:38393ms step_avg:163.38ms
step:246/1530 train_loss:4.0515 train_time:38560ms step_avg:163.39ms
step:247/1530 train_loss:4.0058 train_time:38725ms step_avg:163.40ms
step:248/1530 train_loss:4.1079 train_time:38892ms step_avg:163.41ms
step:249/1530 train_loss:3.9198 train_time:39057ms step_avg:163.42ms
step:250/1530 train_loss:3.9615 train_time:39223ms step_avg:163.43ms
step:250/1530 val_loss:3.9950 train_time:39271ms step_avg:163.63ms
step:251/1530 train_loss:4.0586 train_time:39393ms step_avg:163.46ms
step:252/1530 train_loss:4.1557 train_time:39560ms step_avg:163.47ms
step:253/1530 train_loss:3.9232 train_time:39727ms step_avg:163.49ms
step:254/1530 train_loss:3.8740 train_time:39895ms step_avg:163.50ms
step:255/1530 train_loss:4.0754 train_time:40060ms step_avg:163.51ms
step:256/1530 train_loss:3.9697 train_time:40226ms step_avg:163.52ms
step:257/1530 train_loss:3.9812 train_time:40392ms step_avg:163.53ms
step:258/1530 train_loss:3.9700 train_time:40559ms step_avg:163.54ms
step:259/1530 train_loss:4.0217 train_time:40725ms step_avg:163.55ms
step:260/1530 train_loss:4.0521 train_time:40893ms step_avg:163.57ms
step:261/1530 train_loss:4.0152 train_time:41059ms step_avg:163.58ms
step:262/1530 train_loss:3.9804 train_time:41226ms step_avg:163.59ms
step:263/1530 train_loss:3.8853 train_time:41391ms step_avg:163.60ms
step:264/1530 train_loss:3.9795 train_time:41558ms step_avg:163.61ms
step:265/1530 train_loss:3.8622 train_time:41725ms step_avg:163.63ms
step:266/1530 train_loss:3.9052 train_time:41892ms step_avg:163.64ms
step:267/1530 train_loss:3.9262 train_time:42058ms step_avg:163.65ms
step:268/1530 train_loss:3.9524 train_time:42223ms step_avg:163.65ms
step:269/1530 train_loss:3.8522 train_time:42389ms step_avg:163.66ms
step:270/1530 train_loss:4.0982 train_time:42555ms step_avg:163.67ms
step:271/1530 train_loss:3.9567 train_time:42721ms step_avg:163.68ms
step:272/1530 train_loss:3.9208 train_time:42887ms step_avg:163.69ms
step:273/1530 train_loss:3.9381 train_time:43053ms step_avg:163.70ms
step:274/1530 train_loss:4.0324 train_time:43220ms step_avg:163.71ms
step:275/1530 train_loss:4.0570 train_time:43386ms step_avg:163.72ms
step:276/1530 train_loss:4.2339 train_time:43555ms step_avg:163.74ms
step:277/1530 train_loss:4.0349 train_time:43721ms step_avg:163.75ms
step:278/1530 train_loss:4.0816 train_time:43887ms step_avg:163.76ms
step:279/1530 train_loss:3.9950 train_time:44054ms step_avg:163.77ms
step:280/1530 train_loss:4.2033 train_time:44222ms step_avg:163.78ms
step:281/1530 train_loss:3.9647 train_time:44389ms step_avg:163.80ms
step:282/1530 train_loss:3.9431 train_time:44556ms step_avg:163.81ms
step:283/1530 train_loss:3.9028 train_time:44722ms step_avg:163.82ms
step:284/1530 train_loss:4.0379 train_time:44887ms step_avg:163.82ms
step:285/1530 train_loss:4.0478 train_time:45054ms step_avg:163.83ms
step:286/1530 train_loss:4.0801 train_time:45219ms step_avg:163.84ms
step:287/1530 train_loss:3.8915 train_time:45384ms step_avg:163.84ms
step:288/1530 train_loss:4.0008 train_time:45550ms step_avg:163.85ms
step:289/1530 train_loss:3.8682 train_time:45716ms step_avg:163.86ms
step:290/1530 train_loss:3.8540 train_time:45880ms step_avg:163.86ms
step:291/1530 train_loss:3.9029 train_time:46045ms step_avg:163.86ms
step:292/1530 train_loss:3.8521 train_time:46211ms step_avg:163.87ms
step:293/1530 train_loss:3.8854 train_time:46376ms step_avg:163.87ms
step:294/1530 train_loss:3.9223 train_time:46542ms step_avg:163.88ms
step:295/1530 train_loss:3.8253 train_time:46707ms step_avg:163.88ms
step:296/1530 train_loss:3.8466 train_time:46874ms step_avg:163.89ms
step:297/1530 train_loss:3.8569 train_time:47039ms step_avg:163.90ms
step:298/1530 train_loss:3.9587 train_time:47204ms step_avg:163.90ms
step:299/1530 train_loss:3.8155 train_time:47370ms step_avg:163.91ms
step:300/1530 train_loss:3.9552 train_time:47536ms step_avg:163.92ms
step:301/1530 train_loss:3.9520 train_time:47701ms step_avg:163.92ms
step:302/1530 train_loss:3.9240 train_time:47865ms step_avg:163.92ms
step:303/1530 train_loss:3.9719 train_time:48031ms step_avg:163.93ms
step:304/1530 train_loss:3.9589 train_time:48196ms step_avg:163.93ms
step:305/1530 train_loss:4.4418 train_time:48361ms step_avg:163.94ms
step:306/1530 train_loss:3.9301 train_time:48525ms step_avg:163.94ms
step:307/1530 train_loss:3.8333 train_time:48690ms step_avg:163.94ms
step:308/1530 train_loss:3.9778 train_time:48857ms step_avg:163.95ms
step:309/1530 train_loss:3.8678 train_time:49022ms step_avg:163.95ms
step:310/1530 train_loss:4.0770 train_time:49186ms step_avg:163.95ms
step:311/1530 train_loss:3.9259 train_time:49352ms step_avg:163.96ms
step:312/1530 train_loss:3.8595 train_time:49517ms step_avg:163.96ms
step:313/1530 train_loss:3.9223 train_time:49681ms step_avg:163.96ms
step:314/1530 train_loss:4.0448 train_time:49845ms step_avg:163.96ms
step:315/1530 train_loss:3.9372 train_time:50011ms step_avg:163.97ms
step:316/1530 train_loss:3.7878 train_time:50175ms step_avg:163.97ms
step:317/1530 train_loss:3.8718 train_time:50340ms step_avg:163.97ms
step:318/1530 train_loss:3.9115 train_time:50505ms step_avg:163.98ms
step:319/1530 train_loss:3.8898 train_time:50671ms step_avg:163.99ms
step:320/1530 train_loss:4.0031 train_time:50837ms step_avg:163.99ms
step:321/1530 train_loss:3.9457 train_time:51001ms step_avg:163.99ms
step:322/1530 train_loss:3.9231 train_time:51167ms step_avg:164.00ms
step:323/1530 train_loss:3.9988 train_time:51334ms step_avg:164.01ms
step:324/1530 train_loss:3.9346 train_time:51499ms step_avg:164.01ms
step:325/1530 train_loss:4.0028 train_time:51664ms step_avg:164.01ms
step:326/1530 train_loss:3.8827 train_time:51831ms step_avg:164.02ms
step:327/1530 train_loss:4.3915 train_time:51996ms step_avg:164.03ms
step:328/1530 train_loss:4.0623 train_time:52161ms step_avg:164.03ms
step:329/1530 train_loss:3.7877 train_time:52326ms step_avg:164.03ms
step:330/1530 train_loss:3.7353 train_time:52492ms step_avg:164.04ms
step:331/1530 train_loss:3.9689 train_time:52657ms step_avg:164.04ms
step:332/1530 train_loss:3.9023 train_time:52822ms step_avg:164.04ms
step:333/1530 train_loss:3.8780 train_time:52987ms step_avg:164.05ms
step:334/1530 train_loss:3.8323 train_time:53152ms step_avg:164.05ms
step:335/1530 train_loss:3.9992 train_time:53319ms step_avg:164.06ms
step:336/1530 train_loss:3.9558 train_time:53483ms step_avg:164.06ms
step:337/1530 train_loss:4.4129 train_time:53650ms step_avg:164.07ms
step:338/1530 train_loss:3.9253 train_time:53815ms step_avg:164.07ms
step:339/1530 train_loss:3.8623 train_time:53979ms step_avg:164.07ms
step:340/1530 train_loss:3.9295 train_time:54144ms step_avg:164.07ms
step:341/1530 train_loss:3.8454 train_time:54312ms step_avg:164.08ms
step:342/1530 train_loss:3.8003 train_time:54479ms step_avg:164.09ms
step:343/1530 train_loss:3.8261 train_time:54648ms step_avg:164.11ms
step:344/1530 train_loss:3.9919 train_time:54817ms step_avg:164.12ms
step:345/1530 train_loss:3.8058 train_time:54986ms step_avg:164.14ms
step:346/1530 train_loss:3.7616 train_time:55154ms step_avg:164.15ms
step:347/1530 train_loss:3.7925 train_time:55323ms step_avg:164.16ms
step:348/1530 train_loss:3.8567 train_time:55491ms step_avg:164.17ms
step:349/1530 train_loss:3.8197 train_time:55659ms step_avg:164.18ms
step:350/1530 train_loss:3.5712 train_time:55827ms step_avg:164.20ms
step:351/1530 train_loss:3.8187 train_time:55996ms step_avg:164.21ms
step:352/1530 train_loss:4.1862 train_time:56163ms step_avg:164.22ms
step:353/1530 train_loss:3.6484 train_time:56332ms step_avg:164.23ms
step:354/1530 train_loss:3.9214 train_time:56498ms step_avg:164.24ms
step:355/1530 train_loss:3.7774 train_time:56667ms step_avg:164.25ms
step:356/1530 train_loss:3.8797 train_time:56836ms step_avg:164.27ms
step:357/1530 train_loss:3.7532 train_time:57003ms step_avg:164.27ms
step:358/1530 train_loss:3.8581 train_time:57171ms step_avg:164.29ms
step:359/1530 train_loss:3.7581 train_time:57341ms step_avg:164.30ms
step:360/1530 train_loss:3.4161 train_time:57511ms step_avg:164.32ms
step:361/1530 train_loss:4.0071 train_time:57679ms step_avg:164.33ms
step:362/1530 train_loss:3.9072 train_time:57846ms step_avg:164.34ms
step:363/1530 train_loss:3.8297 train_time:58014ms step_avg:164.35ms
step:364/1530 train_loss:3.7332 train_time:58181ms step_avg:164.35ms
step:365/1530 train_loss:3.9056 train_time:58349ms step_avg:164.36ms
step:366/1530 train_loss:3.8513 train_time:58517ms step_avg:164.37ms
step:367/1530 train_loss:3.8445 train_time:58684ms step_avg:164.38ms
step:368/1530 train_loss:3.8376 train_time:58853ms step_avg:164.39ms
step:369/1530 train_loss:3.7360 train_time:59022ms step_avg:164.41ms
step:370/1530 train_loss:3.8707 train_time:59190ms step_avg:164.42ms
step:371/1530 train_loss:3.7230 train_time:59358ms step_avg:164.43ms
step:372/1530 train_loss:3.6862 train_time:59526ms step_avg:164.44ms
step:373/1530 train_loss:3.9083 train_time:59695ms step_avg:164.45ms
step:374/1530 train_loss:3.8236 train_time:59863ms step_avg:164.46ms
step:375/1530 train_loss:3.7935 train_time:60031ms step_avg:164.47ms
step:375/1530 val_loss:3.8147 train_time:60080ms step_avg:164.60ms