-
Notifications
You must be signed in to change notification settings - Fork 1
/
LinearNNClassifier.h
160 lines (115 loc) · 3.68 KB
/
LinearNNClassifier.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
/*
* LinearNNClassifier.h
*
* Created on: Mar 25, 2015
* Author: mszhang
*/
#ifndef SRC_LINEARNNCLASSIFIER_H_
#define SRC_LINEARNNCLASSIFIER_H_
#include <hash_set>
#include <iostream>
#include <armadillo>
#include <assert.h>
#include "Example.h"
#include "Feature.h"
#include "MyLib.h"
#include "Metric.h"
#include "LinearHidderLayer.h"
#include "SparseLinearHidderLayer.h"
#include "NRMat.h"
using namespace nr;
using namespace std;
using namespace arma;
class LinearNNClassifier {
public:
LinearNNClassifier();
virtual ~LinearNNClassifier();
public:
double* _wordEmb;
double* _grad_wordEmb;
double* _eg2_wordEmb;
double* _atomEmb;
double* _grad_atomEmb;
double* _eg2_atomEmb;
double* _layer1W;
mat _layer1b;
double* _gradlayer1W;
mat _gradlayer1b;
double* _eg2layer1W;
mat _eg2layer1b;
int _lay1InputDim;
int _layer1OutDim;
LinearHidderLayer _layer2;
SparseLinearHidderLayer _layer_linear;
int _linearfeatSize;
int _actionSize;
int _wordcontext;
int _wordSize;
int _wordDim;
int _atomcontext;
int _atomSize;
int _atomDim;
Metric _eval;
int _lossFunc;
double _dropOut;
bool _b_wordEmb_finetune;
int _dropnum;
hash_set<int> _wordPreComputed;
hash_set<int> _atomPreComputed;
hash_set<int> _curWordPreComputed;
hash_set<int> _curAtomPreComputed;
hash_map<int, int> _curWordPreComputedId;
hash_map<int, int> _curAtomPreComputedId;
double* _wordPreComputedForward, *_atomPreComputedForward; // results
double* _wordPreComputedBackward, *_atomPreComputedBackward; // grad
int _curWordPreComputedNum, _curAtomPreComputedNum;
public:
void init(int wordDim, int wordSize, int wordcontext, int atomDim, int atomSize, int atomcontext, int lay1OutDim, int labelSize, int linearfeatSize);
void init(const mat& wordEmb, int wordcontext, int atomDim, int atomSize, int atomcontext, int lay1OutDim, int labelSize, int linearfeatSize);
double process(const vector<Example>& examples, int iter);
void predict(const Feature& features, vector<double>& results);
double computeScore(const Example& example);
void updateParams(double regularizationWeight, double adaAlpha, double adaEps);
void writeModel();
void loadModel();
void preCompute();
public:
inline void resetEval()
{
_eval.reset();
}
inline void setLossFunc(int lossFunc)
{
_lossFunc = lossFunc;
}
inline void setDropValue(double dropOut)
{
_dropOut = dropOut;
}
inline void setWordEmbFinetune(bool b_wordEmb_finetune)
{
_b_wordEmb_finetune = b_wordEmb_finetune;
}
inline void setdropnum(int dropnum)
{
_dropnum = dropnum;
}
inline void setPreComputed(const hash_set<int>& wordPreComputed, const hash_set<int>& atomPreComputed)
{
static hash_set<int>::iterator it;
for (it = wordPreComputed.begin(); it != wordPreComputed.end(); ++it)
{
_wordPreComputed.insert(*it);
}
for (it = atomPreComputed.begin(); it != atomPreComputed.end(); ++it)
{
_atomPreComputed.insert(*it);
}
}
void checkgrads(const vector<Example>& examples, int iter);
void checkgradColSparse(const vector<Example>& examples, mat& Wd, const mat& gradWd, const string& mark, int iter, const hash_set<int>& sparseColIndexes, const mat& ft);
void checkgradRowSparse(const vector<Example>& examples, mat& Wd, const mat& gradWd, const string& mark, int iter, const hash_set<int>& sparseRowIndexes, const mat& ft);
void checkgrad(const vector<Example>& examples, double* Wd, const double* gradWd, const string& mark, int iter, int rowSize, int colSize);
void checkgrad(const vector<Example>& examples, mat& Wd, const mat& gradWd, const string& mark, int iter);
};
#endif /* SRC_LINEARNNCLASSIFIER_H_ */