-
Notifications
You must be signed in to change notification settings - Fork 103
/
MnistFnnKerasFunctional.cs
98 lines (77 loc) · 3.17 KB
/
MnistFnnKerasFunctional.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
/*****************************************************************************
Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
******************************************************************************/
using Tensorflow.Keras.Engine;
using Tensorflow.NumPy;
using static Tensorflow.Binding;
using static Tensorflow.KerasApi;
namespace TensorFlowNET.Examples;
/// <summary>
/// The Keras functional API is a way to create models that are more flexible than the tf.keras.Sequential API.
/// The functional API can handle models with non-linear topology, shared layers, and even multiple inputs or outputs.
/// https://keras.io/guides/functional_api/
/// </summary>
public class MnistFnnKerasFunctional : SciSharpExample, IExample
{
IModel model;
NDArray x_train, y_train, x_test, y_test;
public ExampleConfig InitConfig()
=> Config = new ExampleConfig
{
Name = "MNIST FNN (Keras Functional)",
Enabled = true
};
public bool Run()
{
tf.enable_eager_execution();
PrepareData();
BuildModel();
Train();
return true;
}
public override void PrepareData()
{
(x_train, y_train, x_test, y_test) = keras.datasets.mnist.load_data();
x_train = x_train.reshape((60000, 784)) / 255f;
x_test = x_test.reshape((10000, 784)) / 255f;
}
public override void BuildModel()
{
// input layer
var inputs = keras.Input(shape: 784);
// 1st dense layer
var outputs = layers.Dense(64, activation: keras.activations.Relu).Apply(inputs);
// 2nd dense layer
outputs = layers.Dense(64, activation: keras.activations.Relu).Apply(outputs);
// output layer
outputs = layers.Dense(10).Apply(outputs);
// build keras model
model = keras.Model(inputs, outputs, name: "mnist_model");
// show model summary
model.summary();
// compile keras model into tensorflow's static graph
model.compile(loss: keras.losses.SparseCategoricalCrossentropy(from_logits: true),
optimizer: keras.optimizers.RMSprop(),
metrics: new[] { "accuracy" });
}
public override void Train()
{
// train model by feeding data and labels.
model.fit(x_train, y_train, batch_size: 64, epochs: 2, validation_split: 0.2f);
// evluate the model
model.evaluate(x_test, y_test, verbose: 2);
// save and serialize model
model.save("mnist_model");
// recreate the exact same model purely from the file:
// model = keras.models.load_model("path_to_my_model");
}
}