-
Notifications
You must be signed in to change notification settings - Fork 0
/
Robot.ino
372 lines (295 loc) · 10.8 KB
/
Robot.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
/*Protocolo de comunicacao para 2018
* [M][ID][Flags][V1][V2][V3][CRCHi][CRCLo]
* [Flags]=b [XXXX HCCD]
*/
//bibliotecas do radio
#include <SPI.h>
#include <Enrf24.h>
#include <nRF24L01.h>
#include <string.h>
//biblioteca de manipulação do pwm
#include <wiring_analog.c>
#define ROBOT_ID 0x01 //trocar para cada agente
#define CHANNEL 10
#define DUTY 0.8
//mapeamento de pinos
#define Chute_PWM PB_4 // pwm do chute
#define disparo PD_6 // comando de chute
#define disparo_chip PC_7 //Comando de chip kick
#define drible PE_5 //motor do drible
#define Speed_M1 PB_5 //modulo das velocidades dos motores
#define Speed_M2 PB_0
#define Speed_M3 PB_1
#define Direction_M1 PA_2 //Sentido de rotacao dos motores
#define Direction_M2 PA_3
#define Direction_M3 PA_4
#define Hall_M1 PB_6 //sensores Hall dos motores
#define Hall_M2 PB_7
#define Hall_M3 PE_0
#define Infrared PE_4 //sensor de posse de bola
#define adc_bateria PE_1 //A2
#define adc_chute PE_3 //A0
#define Led_aux PF_0
//bytes do protocolo
#define PROTOCOL_SIZE 8
#define START_BYTE 0x4D
#define HORUS_BIT 0x08
#define CHUTE_BIT 0x40
#define PASSE_BIT 0x20
#define DRIBLE_BIT 0x01
#define ID_BIT 0x07
#define ANTI_HORARIO 0x7F
#define PASS 80
#define KICK 170
const byte _auchCRCHi[] = {
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40};
/* Table of CRC values for low�order byte */
const byte _auchCRCLo[] = {
0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4,
0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,
0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD,
0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7,
0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,
0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE,
0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2,
0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,
0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB,
0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,
0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91,
0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,
0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88,
0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80,
0x40};
//radio
Enrf24 radio(PD_1, PC_4, PC_5); //PD_1: CE PC_4: CSN PC_5:IRQ
const uint8_t rxaddr[] = {0x11, 0x22, 0x33, 0x44, 0x55};
//Funcoes utilizadas
void Stop(void); //Parar todas as ações do robô
void receivePackage(void);
//variaveis globais
unsigned long fail_safe=0;
bool kick_state=false, green_led_state=false, blue_led_state=false;
void setup() {
pinMode(Chute_PWM, OUTPUT);
pinMode(disparo, OUTPUT);
pinMode(disparo_chip, OUTPUT);
pinMode(drible, OUTPUT);
pinMode(Speed_M1, OUTPUT);
pinMode(Speed_M2, OUTPUT);
pinMode(Speed_M3, OUTPUT);
pinMode(Direction_M1, OUTPUT);
pinMode(Direction_M2, OUTPUT);
pinMode(Direction_M3, OUTPUT);
pinMode(Hall_M1, INPUT);
pinMode(Hall_M2, INPUT);
pinMode(Hall_M3, INPUT);
pinMode(Infrared, INPUT);
pinMode(adc_bateria, INPUT);
pinMode(adc_chute, INPUT);
pinMode(Led_aux, OUTPUT);
pinMode(RED_LED, OUTPUT);
pinMode(GREEN_LED, OUTPUT);
pinMode(BLUE_LED, OUTPUT);
Stop(); //para todos os motores para que não venha lixo na comunicação
Serial.begin(38400);
SPI.begin();
SPI.setDataMode(SPI_MODE0);
SPI.setBitOrder(MSBFIRST); //MSB primeiro
SPI.setModule(3); //seleciona o modulo de SPI 3 do micro
radio.begin(); //padrões 1Mbps, canal 0, max TX power
radio.setChannel(CHANNEL);
radio.setRXaddress((void*)rxaddr);
radio.enableRX(); //começa a receber
}
void loop() {
/*
* Adicionar funcoes para controle interno do robo
*/
if (radio.radioState() != ENRF24_STATE_PRX) { //radio nao esta presente
digitalWrite(RED_LED, HIGH);
digitalWrite(GREEN_LED, LOW);
digitalWrite(BLUE_LED, LOW);
Stop();
fail_safe = 0;
}
else{
digitalWrite(RED_LED, LOW);
if (radio.available(true)) { //recebimento de nova informacao
digitalWrite(BLUE_LED, LOW);
green_led_state=!green_led_state;
digitalWrite(GREEN_LED, green_led_state);
receivePackage();
} //end recebimento
//Se o robo nao receber nenhuma informacao por 1 segundo ele deve parar (Fail safe)->estado de espera de comandos
else{ //estado de espera
if(fail_safe==0){
fail_safe=millis();
}
} //end else do estado de espera
} //end recepcao
if(millis()-fail_safe>=500){
digitalWrite(GREEN_LED, LOW);
}
if(millis()-fail_safe>=1000){
digitalWrite(RED_LED, LOW);
digitalWrite(GREEN_LED, HIGH);
digitalWrite(BLUE_LED, LOW);
Stop();
fail_safe=0;
}
} //end main loop
bool Boost(int volt){
const int D=(int)(256*(1-DUTY));
int valor_capacitor=analogRead(adc_chute);
/*
Divisor de tensão (1,5M e 22K): 200 volts -------- 2.644 volts 2.85 pode ser 2M e 27k 1.97M 26.9k
carga do capacitor ----- tensão na porta
ADC: 3 volts (máximo)-------4095 (12 bits de resolução)
tensão na porta --------- valor de contagem
200*3*valor de contagem
Carga do capacitor= ---------------------------
4095*2.891
*/
float carga_capacitor=(0.05541609172471502274830565299552*valor_capacitor); //2,6942=valor físico
if(carga_capacitor<=volt){
PWMWrite(Chute_PWM,256,D,4000);
delay(2);
return false;
}
else{
PWMWrite (Chute_PWM,256,256,4000);
delay(2);
return true;
}
} //end boost
void receivePackage(void){
char full_frame[PROTOCOL_SIZE];
byte frame[PROTOCOL_SIZE-4];
radio.read(full_frame,PROTOCOL_SIZE);
for(int j=0;j<PROTOCOL_SIZE;j++){
Serial.write(&full_frame[j],1);
}
//retornar valores lidos para debug
//Serial.write(full_frame,PROTOCOL_SIZE);
//Serial.println();
//check sart byte and id
if (full_frame[0]!=START_BYTE || full_frame[1]!=ROBOT_ID){
return;
}
u_int crc = ((full_frame[PROTOCOL_SIZE - 2] << 8) | full_frame[PROTOCOL_SIZE - 1]);
for(int i=0;i<PROTOCOL_SIZE-4;i++){
frame[i]=full_frame[i+2];
}
//checksum
if(crc != calcCrc(full_frame[1],frame,PROTOCOL_SIZE-4)){
return;
}
analyzeData(frame);
} //end receivePackage
void analyzeData(byte* frame){
byte Velocidade[3] ={0,0,0};
fail_safe=0;
blue_led_state=!blue_led_state;
digitalWrite(BLUE_LED,blue_led_state);
//Flags
//drible
if(frame[0]&DRIBLE_BIT){
digitalWrite(drible,HIGH);
}else{
digitalWrite(drible,LOW);
}
//passe
if(frame[0]&PASSE_BIT){
if(kick_state && digitalRead(Infrared)){
//passe a bola
}
}
//chute
if(frame[0]&CHUTE_BIT){
if(kick_state && digitalRead(Infrared)){
//chute a bola
}
}
//enviar ao supervisorio
if(frame[0]&HORUS_BIT){
//cod para enviar as informacoes
}
//Roda 1
if(frame[1]<=ANTI_HORARIO){
digitalWrite(Direction_M1, LOW);
Velocidade[1] = 2*frame[1];
}
else{
digitalWrite(Direction_M1, HIGH);
Velocidade[1] = 2*(frame[1] & ANTI_HORARIO);
}
analogWrite(Speed_M1,Velocidade[1]);
delay(2);
//Roda 2
if(frame[2]<=ANTI_HORARIO){
digitalWrite(Direction_M2, LOW);
Velocidade[2] = 2*frame[2];
}
else{
digitalWrite(Direction_M2, HIGH);
Velocidade[2] = 2*(frame[2] & ANTI_HORARIO);
}
analogWrite(Speed_M2,Velocidade[2]);
delay(2);
//Roda 3
if(frame[3]<=ANTI_HORARIO){
digitalWrite(Direction_M3, LOW);
Velocidade[3] = 2*frame[3];
}
else{
digitalWrite(Direction_M3, HIGH);
Velocidade[3] = 2*(frame[3] & ANTI_HORARIO);
}
analogWrite(Speed_M3,Velocidade[3]);
delay(2);
} //end analyzeData
word calcCrc(byte address, byte* pduFrame, byte pduLen) {
byte CRCHi = 0xFF, CRCLo = 0x0FF, Index;
Index = CRCHi ^ address;
CRCHi = CRCLo ^ _auchCRCHi[Index];
CRCLo = _auchCRCLo[Index];
while (pduLen--) {
Index = CRCHi ^ *pduFrame++;
CRCHi = CRCLo ^ _auchCRCHi[Index];
CRCLo = _auchCRCLo[Index];
}
return (CRCHi << 8) | CRCLo;
} //end calcCrc
void Stop(void) {
//********parar as rodas desativando os enables******
PWMWrite(Speed_M1, 128, 0, 1000);
delay(2);
PWMWrite(Speed_M2, 128, 0, 1000);
delay(2);
PWMWrite(Speed_M3, 128, 0, 1000);
delay(2);
//**********não chutar nem driblar************
digitalWrite(disparo, HIGH);
digitalWrite(disparo_chip, HIGH);
digitalWrite(drible, LOW);
} //end Stop