-
Notifications
You must be signed in to change notification settings - Fork 20
/
gmp_compat.c
824 lines (665 loc) · 22.2 KB
/
gmp_compat.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
/*
Name: gmp_compat.c
Purpose: Provide GMP compatiable routines for imath library
Author: David Peixotto
Copyright (c) 2012 Qualcomm Innovation Center, Inc. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include "gmp_compat.h"
#include <assert.h>
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#else
#include <sys/types.h>
#endif
#ifdef NDEBUG
#define CHECK(res) (res)
#else
#define CHECK(res) assert(((res) == MP_OK) && "expected MP_OK")
#endif
/* *(signed char *)&endian_test will thus either be:
* 0b00000001 = 1 on big-endian
* 0b11111111 = -1 on little-endian */
static const uint16_t endian_test = 0x1FF;
#define HOST_ENDIAN (*(signed char *)&endian_test)
/*************************************************************************
*
* Functions with direct translations
*
*************************************************************************/
/* gmp: mpq_clear */
void GMPQAPI(clear)(mp_rat x) { mp_rat_clear(x); }
/* gmp: mpq_cmp */
int GMPQAPI(cmp)(mp_rat op1, mp_rat op2) { return mp_rat_compare(op1, op2); }
/* gmp: mpq_init */
void GMPQAPI(init)(mp_rat x) { CHECK(mp_rat_init(x)); }
/* gmp: mpq_mul */
void GMPQAPI(mul)(mp_rat product, mp_rat multiplier, mp_rat multiplicand) {
CHECK(mp_rat_mul(multiplier, multiplicand, product));
}
/* gmp: mpq_set */
void GMPQAPI(set)(mp_rat rop, mp_rat op) { CHECK(mp_rat_copy(op, rop)); }
/* gmp: mpz_abs */
void GMPZAPI(abs)(mp_int rop, mp_int op) { CHECK(mp_int_abs(op, rop)); }
/* gmp: mpz_add */
void GMPZAPI(add)(mp_int rop, mp_int op1, mp_int op2) {
CHECK(mp_int_add(op1, op2, rop));
}
/* gmp: mpz_clear */
void GMPZAPI(clear)(mp_int x) { mp_int_clear(x); }
/* gmp: mpz_cmp_si */
int GMPZAPI(cmp_si)(mp_int op1, long op2) {
return mp_int_compare_value(op1, op2);
}
/* gmp: mpz_cmpabs */
int GMPZAPI(cmpabs)(mp_int op1, mp_int op2) {
return mp_int_compare_unsigned(op1, op2);
}
/* gmp: mpz_cmp */
int GMPZAPI(cmp)(mp_int op1, mp_int op2) { return mp_int_compare(op1, op2); }
/* gmp: mpz_init */
void GMPZAPI(init)(mp_int x) { CHECK(mp_int_init(x)); }
/* gmp: mpz_mul */
void GMPZAPI(mul)(mp_int rop, mp_int op1, mp_int op2) {
CHECK(mp_int_mul(op1, op2, rop));
}
/* gmp: mpz_neg */
void GMPZAPI(neg)(mp_int rop, mp_int op) { CHECK(mp_int_neg(op, rop)); }
/* gmp: mpz_set_si */
void GMPZAPI(set_si)(mp_int rop, long op) { CHECK(mp_int_set_value(rop, op)); }
/* gmp: mpz_set */
void GMPZAPI(set)(mp_int rop, mp_int op) { CHECK(mp_int_copy(op, rop)); }
/* gmp: mpz_sub */
void GMPZAPI(sub)(mp_int rop, mp_int op1, mp_int op2) {
CHECK(mp_int_sub(op1, op2, rop));
}
/* gmp: mpz_swap */
void GMPZAPI(swap)(mp_int rop1, mp_int rop2) { mp_int_swap(rop1, rop2); }
/* gmp: mpq_sgn */
int GMPQAPI(sgn)(mp_rat op) { return mp_rat_compare_zero(op); }
/* gmp: mpz_sgn */
int GMPZAPI(sgn)(mp_int op) { return mp_int_compare_zero(op); }
/* gmp: mpq_set_ui */
void GMPQAPI(set_ui)(mp_rat rop, unsigned long op1, unsigned long op2) {
CHECK(mp_rat_set_uvalue(rop, op1, op2));
}
/* gmp: mpz_set_ui */
void GMPZAPI(set_ui)(mp_int rop, unsigned long op) {
CHECK(mp_int_set_uvalue(rop, op));
}
/* gmp: mpq_den_ref */
mp_int GMPQAPI(denref)(mp_rat op) { return mp_rat_denom_ref(op); }
/* gmp: mpq_num_ref */
mp_int GMPQAPI(numref)(mp_rat op) { return mp_rat_numer_ref(op); }
/* gmp: mpq_canonicalize */
void GMPQAPI(canonicalize)(mp_rat op) { CHECK(mp_rat_reduce(op)); }
/*
* Functions that can be implemented as a combination of imath functions
*/
/* gmp: mpz_addmul */
/* gmp: rop = rop + (op1 * op2) */
void GMPZAPI(addmul)(mp_int rop, mp_int op1, mp_int op2) {
mpz_t tempz;
mp_int temp = &tempz;
mp_int_init(temp);
CHECK(mp_int_mul(op1, op2, temp));
CHECK(mp_int_add(rop, temp, rop));
mp_int_clear(temp);
}
/* gmp: mpz_divexact */
/* gmp: only produces correct results when d divides n */
void GMPZAPI(divexact)(mp_int q, mp_int n, mp_int d) {
CHECK(mp_int_div(n, d, q, NULL));
}
/* gmp: mpz_divisible_p */
/* gmp: return 1 if d divides n, 0 otherwise */
/* gmp: 0 is considered to divide only 0 */
int GMPZAPI(divisible_p)(mp_int n, mp_int d) {
/* variables to hold remainder */
mpz_t rz;
mp_int r = &rz;
int r_is_zero;
/* check for d = 0 */
int n_is_zero = mp_int_compare_zero(n) == 0;
int d_is_zero = mp_int_compare_zero(d) == 0;
if (d_is_zero) return n_is_zero;
/* return true if remainder is 0 */
CHECK(mp_int_init(r));
CHECK(mp_int_div(n, d, NULL, r));
r_is_zero = mp_int_compare_zero(r) == 0;
mp_int_clear(r);
return r_is_zero;
}
/* gmp: mpz_submul */
/* gmp: rop = rop - (op1 * op2) */
void GMPZAPI(submul)(mp_int rop, mp_int op1, mp_int op2) {
mpz_t tempz;
mp_int temp = &tempz;
mp_int_init(temp);
CHECK(mp_int_mul(op1, op2, temp));
CHECK(mp_int_sub(rop, temp, rop));
mp_int_clear(temp);
}
/* gmp: mpz_add_ui */
void GMPZAPI(add_ui)(mp_int rop, mp_int op1, unsigned long op2) {
mpz_t tempz;
mp_int temp = &tempz;
CHECK(mp_int_init_uvalue(temp, op2));
CHECK(mp_int_add(op1, temp, rop));
mp_int_clear(temp);
}
/* gmp: mpz_divexact_ui */
/* gmp: only produces correct results when d divides n */
void GMPZAPI(divexact_ui)(mp_int q, mp_int n, unsigned long d) {
mpz_t tempz;
mp_int temp = &tempz;
CHECK(mp_int_init_uvalue(temp, d));
CHECK(mp_int_div(n, temp, q, NULL));
mp_int_clear(temp);
}
/* gmp: mpz_mul_ui */
void GMPZAPI(mul_ui)(mp_int rop, mp_int op1, unsigned long op2) {
mpz_t tempz;
mp_int temp = &tempz;
CHECK(mp_int_init_uvalue(temp, op2));
CHECK(mp_int_mul(op1, temp, rop));
mp_int_clear(temp);
}
/* gmp: mpz_pow_ui */
/* gmp: 0^0 = 1 */
void GMPZAPI(pow_ui)(mp_int rop, mp_int base, unsigned long exp) {
mpz_t tempz;
mp_int temp = &tempz;
/* check for 0^0 */
if (exp == 0 && mp_int_compare_zero(base) == 0) {
CHECK(mp_int_set_value(rop, 1));
return;
}
/* rop = base^exp */
CHECK(mp_int_init_uvalue(temp, exp));
CHECK(mp_int_expt_full(base, temp, rop));
mp_int_clear(temp);
}
/* gmp: mpz_sub_ui */
void GMPZAPI(sub_ui)(mp_int rop, mp_int op1, unsigned long op2) {
mpz_t tempz;
mp_int temp = &tempz;
CHECK(mp_int_init_uvalue(temp, op2));
CHECK(mp_int_sub(op1, temp, rop));
mp_int_clear(temp);
}
/*************************************************************************
*
* Functions with different behavior in corner cases
*
*************************************************************************/
/* gmp: mpz_gcd */
void GMPZAPI(gcd)(mp_int rop, mp_int op1, mp_int op2) {
int op1_is_zero = mp_int_compare_zero(op1) == 0;
int op2_is_zero = mp_int_compare_zero(op2) == 0;
if (op1_is_zero && op2_is_zero) {
mp_int_zero(rop);
return;
}
CHECK(mp_int_gcd(op1, op2, rop));
}
/* gmp: mpz_get_str */
char *GMPZAPI(get_str)(char *str, int radix, mp_int op) {
int i, r, len;
/* Support negative radix like gmp */
r = radix;
if (r < 0) r = -r;
/* Compute the length of the string needed to hold the int */
len = mp_int_string_len(op, r);
if (str == NULL) {
str = malloc(len);
}
/* Convert to string using imath function */
CHECK(mp_int_to_string(op, r, str, len));
/* Change case to match gmp */
for (i = 0; i < len - 1; i++) {
if (radix < 0) {
str[i] = toupper(str[i]);
} else {
str[i] = tolower(str[i]);
}
}
return str;
}
/* gmp: mpq_get_str */
char *GMPQAPI(get_str)(char *str, int radix, mp_rat op) {
int i, r, len;
/* Only print numerator if it is a whole number */
if (mp_int_compare_value(mp_rat_denom_ref(op), 1) == 0)
return GMPZAPI(get_str)(str, radix, mp_rat_numer_ref(op));
/* Support negative radix like gmp */
r = radix;
if (r < 0) r = -r;
/* Compute the length of the string needed to hold the int */
len = mp_rat_string_len(op, r);
if (str == NULL) {
str = malloc(len);
}
/* Convert to string using imath function */
CHECK(mp_rat_to_string(op, r, str, len));
/* Change case to match gmp */
for (i = 0; i < len; i++) {
if (radix < 0) {
str[i] = toupper(str[i]);
} else {
str[i] = tolower(str[i]);
}
}
return str;
}
/* gmp: mpz_set_str */
int GMPZAPI(set_str)(mp_int rop, char *str, int base) {
mp_result res = mp_int_read_string(rop, base, str);
return ((res == MP_OK) ? 0 : -1);
}
/* gmp: mpq_set_str */
int GMPQAPI(set_str)(mp_rat rop, char *s, int base) {
char *slash;
char *str;
mp_result resN;
mp_result resD;
int res = 0;
/* Copy string to temporary storage so we can modify it below */
str = malloc(strlen(s) + 1);
strcpy(str, s);
/* Properly format the string as an int by terminating at the / */
slash = strchr(str, '/');
if (slash) *slash = '\0';
/* Parse numerator */
resN = mp_int_read_string(mp_rat_numer_ref(rop), base, str);
/* Parse denominator if given or set to 1 if not */
if (slash) {
resD = mp_int_read_string(mp_rat_denom_ref(rop), base, slash + 1);
} else {
resD = mp_int_set_uvalue(mp_rat_denom_ref(rop), 1);
}
/* Return failure if either parse failed */
if (resN != MP_OK || resD != MP_OK) {
res = -1;
}
free(str);
return res;
}
static unsigned long get_long_bits(mp_int op) {
/* Deal with integer that does not fit into unsigned long. We want to grab
* the least significant digits that will fit into the long. Read the digits
* into the long starting at the most significant digit that fits into a
* long. The long is shifted over by MP_DIGIT_BIT before each digit is added.
*
* The shift is decomposed into two steps (following the pattern used in the
* rest of the imath library) to accommodate architectures that don't deal
* well with 32-bit shifts.
*/
mp_size digits_to_copy =
(sizeof(unsigned long) + sizeof(mp_digit) - 1) / sizeof(mp_digit);
if (digits_to_copy > MP_USED(op)) {
digits_to_copy = MP_USED(op);
}
mp_digit *digits = MP_DIGITS(op);
unsigned long out = 0;
for (int i = digits_to_copy - 1; i >= 0; i--) {
out <<= (MP_DIGIT_BIT / 2);
out <<= (MP_DIGIT_BIT / 2);
out |= digits[i];
}
return out;
}
/* gmp: mpz_get_ui */
unsigned long GMPZAPI(get_ui)(mp_int op) {
unsigned long out;
/* Try a standard conversion that fits into an unsigned long */
mp_result res = mp_int_to_uint(op, &out);
if (res == MP_OK) return out;
/* Abort the try if we don't have a range error in the conversion.
* The range error indicates that the value cannot fit into a long. */
CHECK(res == MP_RANGE ? MP_OK : MP_RANGE);
if (res != MP_RANGE) return 0;
return get_long_bits(op);
}
/* gmp: mpz_get_si */
long GMPZAPI(get_si)(mp_int op) {
long out;
unsigned long uout;
int long_msb;
/* Try a standard conversion that fits into a long */
mp_result res = mp_int_to_int(op, &out);
if (res == MP_OK) return out;
/* Abort the try if we don't have a range error in the conversion.
* The range error indicates that the value cannot fit into a long. */
CHECK(res == MP_RANGE ? MP_OK : MP_RANGE);
if (res != MP_RANGE) return 0;
/* get least significant bits into an unsigned long */
uout = get_long_bits(op);
/* clear the top bit */
long_msb = (sizeof(unsigned long) * 8) - 1;
uout &= (~(1UL << long_msb));
/* convert to negative if needed based on sign of op */
if (MP_SIGN(op) == MP_NEG) {
uout = 0 - uout;
}
out = (long)uout;
return out;
}
/* gmp: mpz_lcm */
void GMPZAPI(lcm)(mp_int rop, mp_int op1, mp_int op2) {
int op1_is_zero = mp_int_compare_zero(op1) == 0;
int op2_is_zero = mp_int_compare_zero(op2) == 0;
if (op1_is_zero || op2_is_zero) {
mp_int_zero(rop);
return;
}
CHECK(mp_int_lcm(op1, op2, rop));
CHECK(mp_int_abs(rop, rop));
}
/* gmp: mpz_mul_2exp */
/* gmp: allow big values for op2 when op1 == 0 */
void GMPZAPI(mul_2exp)(mp_int rop, mp_int op1, unsigned long op2) {
if (mp_int_compare_zero(op1) == 0)
mp_int_zero(rop);
else
CHECK(mp_int_mul_pow2(op1, op2, rop));
}
/*
* Functions needing expanded functionality
*/
/* [Note]Overview of division implementation
All division operations (N / D) compute q and r such that
N = q * D + r, with 0 <= abs(r) < abs(d)
The q and r values are not uniquely specified by N and D. To specify which q
and r values should be used, GMP implements three different rounding modes
for integer division:
ceiling - round q twords +infinity, r has opposite sign as d
floor - round q twords -infinity, r has same sign as d
truncate - round q twords zero, r has same sign as n
The imath library only supports truncate as a rounding mode. We need to
implement the other rounding modes in terms of truncating division. We first
perform the division in trucate mode and then adjust q accordingly. Once we
know q, we can easily compute the correct r according the the formula above
by computing:
r = N - q * D
The main task is to compute q. We can compute the correct q from a trucated
version as follows.
For ceiling rounding mode, if q is less than 0 then the truncated rounding
mode is the same as the ceiling rounding mode. If q is greater than zero
then we need to round q up by one because the truncated version was rounded
down to zero. If q equals zero then check to see if the result of the
divison is positive. A positive result needs to increment q to one.
For floor rounding mode, if q is greater than 0 then the trucated rounding
mode is the same as the floor rounding mode. If q is less than zero then we
need to round q down by one because the trucated mode rounded q up by one
twords zero. If q is zero then we need to check to see if the result of the
division is negative. A negative result needs to decrement q to negative
one.
*/
/* gmp: mpz_cdiv_q */
void GMPZAPI(cdiv_q)(mp_int q, mp_int n, mp_int d) {
mpz_t rz;
mp_int r = &rz;
int qsign, rsign, nsign, dsign;
CHECK(mp_int_init(r));
/* save signs before division because q can alias with n or d */
nsign = mp_int_compare_zero(n);
dsign = mp_int_compare_zero(d);
/* truncating division */
CHECK(mp_int_div(n, d, q, r));
/* see: [Note]Overview of division implementation */
qsign = mp_int_compare_zero(q);
rsign = mp_int_compare_zero(r);
if (qsign > 0) { /* q > 0 */
if (rsign != 0) { /* r != 0 */
CHECK(mp_int_add_value(q, 1, q));
}
} else if (qsign == 0) { /* q == 0 */
if (rsign != 0) { /* r != 0 */
if ((nsign > 0 && dsign > 0) || (nsign < 0 && dsign < 0)) {
CHECK(mp_int_set_value(q, 1));
}
}
}
mp_int_clear(r);
}
/* gmp: mpz_fdiv_q */
void GMPZAPI(fdiv_q)(mp_int q, mp_int n, mp_int d) {
mpz_t rz;
mp_int r = &rz;
int qsign, rsign, nsign, dsign;
CHECK(mp_int_init(r));
/* save signs before division because q can alias with n or d */
nsign = mp_int_compare_zero(n);
dsign = mp_int_compare_zero(d);
/* truncating division */
CHECK(mp_int_div(n, d, q, r));
/* see: [Note]Overview of division implementation */
qsign = mp_int_compare_zero(q);
rsign = mp_int_compare_zero(r);
if (qsign < 0) { /* q < 0 */
if (rsign != 0) { /* r != 0 */
CHECK(mp_int_sub_value(q, 1, q));
}
} else if (qsign == 0) { /* q == 0 */
if (rsign != 0) { /* r != 0 */
if ((nsign < 0 && dsign > 0) || (nsign > 0 && dsign < 0)) {
CHECK(mp_int_set_value(q, -1));
}
}
}
mp_int_clear(r);
}
/* gmp: mpz_fdiv_r */
void GMPZAPI(fdiv_r)(mp_int r, mp_int n, mp_int d) {
mpz_t qz;
mpz_t tempz;
mpz_t orig_dz;
mpz_t orig_nz;
mp_int q = &qz;
mp_int temp = &tempz;
mp_int orig_d = &orig_dz;
mp_int orig_n = &orig_nz;
CHECK(mp_int_init(q));
CHECK(mp_int_init(temp));
/* Make a copy of n in case n and d in case they overlap with q */
CHECK(mp_int_init_copy(orig_d, d));
CHECK(mp_int_init_copy(orig_n, n));
/* floor division */
GMPZAPI(fdiv_q)(q, n, d);
/* see: [Note]Overview of division implementation */
/* n = q * d + r ==> r = n - q * d */
mp_int_mul(q, orig_d, temp);
mp_int_sub(orig_n, temp, r);
mp_int_clear(q);
mp_int_clear(temp);
mp_int_clear(orig_d);
mp_int_clear(orig_n);
}
/* gmp: mpz_tdiv_q */
void GMPZAPI(tdiv_q)(mp_int q, mp_int n, mp_int d) {
/* truncating division*/
CHECK(mp_int_div(n, d, q, NULL));
}
/* gmp: mpz_fdiv_q_ui */
unsigned long GMPZAPI(fdiv_q_ui)(mp_int q, mp_int n, unsigned long d) {
mpz_t tempz;
mp_int temp = &tempz;
mpz_t rz;
mp_int r = &rz;
mpz_t orig_nz;
mp_int orig_n = &orig_nz;
unsigned long rl;
CHECK(mp_int_init_uvalue(temp, d));
CHECK(mp_int_init(r));
/* Make a copy of n in case n and q overlap */
CHECK(mp_int_init_copy(orig_n, n));
/* use floor division mode to compute q and r */
GMPZAPI(fdiv_q)(q, n, temp);
GMPZAPI(fdiv_r)(r, orig_n, temp);
CHECK(mp_int_to_uint(r, &rl));
mp_int_clear(temp);
mp_int_clear(r);
mp_int_clear(orig_n);
return rl;
}
/* gmp: mpz_export */
void *GMPZAPI(export)(void *rop, size_t *countp, int order, size_t size,
int endian, size_t nails, mp_int op) {
size_t i, j;
size_t num_used_bytes;
size_t num_words, num_missing_bytes;
ssize_t word_offset;
unsigned char *dst;
mp_digit *src;
int src_bits;
/* We do not have a complete implementation. Assert to ensure our
* restrictions are in place.
*/
assert(nails == 0 && "Do not support non-full words");
assert(endian == 1 || endian == 0 || endian == -1);
assert(order == 1 || order == -1);
/* Test for zero */
if (mp_int_compare_zero(op) == 0) {
if (countp) *countp = 0;
return rop;
}
/* Calculate how many words we need */
num_used_bytes = mp_int_unsigned_len(op);
num_words = (num_used_bytes + (size - 1)) / size; /* ceil division */
assert(num_used_bytes > 0);
/* Check to see if we will have missing bytes in the last word.
Missing bytes can only occur when the size of words we output is
greater than the size of words used internally by imath. The number of
missing bytes is the number of bytes needed to fill out the last word. If
this number is greater than the size of a single mp_digit, then we need to
pad the word with extra zeros. Otherwise, the missing bytes can be filled
directly from the zeros in the last digit in the number.
*/
num_missing_bytes = (size * num_words) - num_used_bytes;
assert(num_missing_bytes < size);
/* Allocate space for the result if needed */
if (rop == NULL) {
rop = malloc(num_words * size);
}
if (endian == 0) {
endian = HOST_ENDIAN;
}
/* Initialize dst and src pointers */
dst = (unsigned char *)rop + (order >= 0 ? (num_words - 1) * size : 0) +
(endian >= 0 ? size - 1 : 0);
src = MP_DIGITS(op);
src_bits = MP_DIGIT_BIT;
word_offset = (endian >= 0 ? size : -size) + (order < 0 ? size : -size);
for (i = 0; i < num_words; i++) {
for (j = 0; j < size && i * size + j < num_used_bytes; j++) {
if (src_bits == 0) {
++src;
src_bits = MP_DIGIT_BIT;
}
*dst = (*src >> (MP_DIGIT_BIT - src_bits)) & 0xFF;
src_bits -= 8;
dst -= endian;
}
for (; j < size; j++) {
*dst = 0;
dst -= endian;
}
dst += word_offset;
}
if (countp) *countp = num_words;
return rop;
}
/* gmp: mpz_import */
void GMPZAPI(import)(mp_int rop, size_t count, int order, size_t size,
int endian, size_t nails, const void *op) {
mpz_t tmpz;
mp_int tmp = &tmpz;
size_t total_size;
size_t num_digits;
ssize_t word_offset;
const unsigned char *src;
mp_digit *dst;
int dst_bits;
size_t i, j;
if (count == 0 || op == NULL) return;
/* We do not have a complete implementation. Assert to ensure our
* restrictions are in place. */
assert(nails == 0 && "Do not support non-full words");
assert(endian == 1 || endian == 0 || endian == -1);
assert(order == 1 || order == -1);
if (endian == 0) {
endian = HOST_ENDIAN;
}
/* Compute number of needed digits by ceil division */
total_size = count * size;
num_digits = (total_size + sizeof(mp_digit) - 1) / sizeof(mp_digit);
/* Init temporary */
mp_int_init_size(tmp, num_digits);
for (i = 0; i < num_digits; i++) tmp->digits[i] = 0;
/* Copy bytes */
src = (const unsigned char *)op + (order >= 0 ? (count - 1) * size : 0) +
(endian >= 0 ? size - 1 : 0);
dst = MP_DIGITS(tmp);
dst_bits = 0;
word_offset = (endian >= 0 ? size : -size) + (order < 0 ? size : -size);
for (i = 0; i < count; i++) {
for (j = 0; j < size; j++) {
if (dst_bits == MP_DIGIT_BIT) {
++dst;
dst_bits = 0;
}
*dst |= ((mp_digit)*src) << dst_bits;
dst_bits += 8;
src -= endian;
}
src += word_offset;
}
tmp->used = num_digits;
/* Remove leading zeros from number */
{
mp_size uz_ = tmp->used;
mp_digit *dz_ = MP_DIGITS(tmp) + uz_ - 1;
while (uz_ > 1 && (*dz_-- == 0)) --uz_;
tmp->used = uz_;
}
/* Copy to destination */
mp_int_copy(tmp, rop);
mp_int_clear(tmp);
}
/* gmp: mpz_sizeinbase */
size_t GMPZAPI(sizeinbase)(mp_int op, int base) {
mp_result res;
size_t size;
/* If op == 0, return 1 */
if (mp_int_compare_zero(op) == 0) return 1;
/* Compute string length in base */
res = mp_int_string_len(op, base);
CHECK((res > 0) == MP_OK);
/* Now adjust the final size by getting rid of string artifacts */
size = res;
/* subtract one for the null terminator */
size -= 1;
/* subtract one for the negative sign */
if (mp_int_compare_zero(op) < 0) size -= 1;
return size;
}