forked from aawc/unrar
-
Notifications
You must be signed in to change notification settings - Fork 0
/
crypt5.cpp
235 lines (194 loc) · 8.03 KB
/
crypt5.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
static void hmac_sha256(const byte *Key,size_t KeyLength,const byte *Data,
size_t DataLength,byte *ResDigest,
sha256_context *ICtxOpt,bool *SetIOpt,
sha256_context *RCtxOpt,bool *SetROpt)
{
const size_t Sha256BlockSize=64; // As defined in RFC 4868.
byte KeyHash[SHA256_DIGEST_SIZE];
if (KeyLength > Sha256BlockSize) // Convert longer keys to key hash.
{
sha256_context KCtx;
sha256_init(&KCtx);
sha256_process(&KCtx, Key, KeyLength);
sha256_done(&KCtx, KeyHash);
Key = KeyHash;
KeyLength = SHA256_DIGEST_SIZE;
}
byte KeyBuf[Sha256BlockSize]; // Store the padded key here.
sha256_context ICtx;
if (ICtxOpt!=NULL && *SetIOpt)
ICtx=*ICtxOpt; // Use already calculated the first block context.
else
{
// This calculation is the same for all iterations with same password.
// So for PBKDF2 we can calculate it only for first block and then reuse
// to improve performance.
for (size_t I = 0; I < KeyLength; I++) // Use 0x36 padding for inner digest.
KeyBuf[I] = Key[I] ^ 0x36;
for (size_t I = KeyLength; I < Sha256BlockSize; I++)
KeyBuf[I] = 0x36;
sha256_init(&ICtx);
sha256_process(&ICtx, KeyBuf, Sha256BlockSize); // Hash padded key.
}
if (ICtxOpt!=NULL && !*SetIOpt) // Store constant context for further reuse.
{
*ICtxOpt=ICtx;
*SetIOpt=true;
}
sha256_process(&ICtx, Data, DataLength); // Hash data.
byte IDig[SHA256_DIGEST_SIZE]; // Internal digest for padded key and data.
sha256_done(&ICtx, IDig);
sha256_context RCtx;
if (RCtxOpt!=NULL && *SetROpt)
RCtx=*RCtxOpt; // Use already calculated first block context.
else
{
// This calculation is the same for all iterations with same password.
// So for PBKDF2 we can calculate it only for first block and then reuse
// to improve performance.
for (size_t I = 0; I < KeyLength; I++) // Use 0x5c for outer key padding.
KeyBuf[I] = Key[I] ^ 0x5c;
for (size_t I = KeyLength; I < Sha256BlockSize; I++)
KeyBuf[I] = 0x5c;
sha256_init(&RCtx);
sha256_process(&RCtx, KeyBuf, Sha256BlockSize); // Hash padded key.
}
if (RCtxOpt!=NULL && !*SetROpt) // Store constant context for further reuse.
{
*RCtxOpt=RCtx;
*SetROpt=true;
}
sha256_process(&RCtx, IDig, SHA256_DIGEST_SIZE); // Hash internal digest.
sha256_done(&RCtx, ResDigest);
}
// PBKDF2 for 32 byte key length. We generate the key for specified number
// of iteration count also as two supplementary values (key for checksums
// and password verification) for iterations+16 and iterations+32.
void pbkdf2(const byte *Pwd, size_t PwdLength,
const byte *Salt, size_t SaltLength,
byte *Key, byte *V1, byte *V2, uint Count)
{
const size_t MaxSalt=64;
byte SaltData[MaxSalt+4];
memcpy(SaltData, Salt, Min(SaltLength,MaxSalt));
SaltData[SaltLength + 0] = 0; // Block index appened to salt.
SaltData[SaltLength + 1] = 0; //
SaltData[SaltLength + 2] = 0; // Since we do not request the key width
SaltData[SaltLength + 3] = 1; // exceeding HMAC width, it is always 1.
// First iteration: HMAC of password, salt and block index (1).
byte U1[SHA256_DIGEST_SIZE];
hmac_sha256(Pwd, PwdLength, SaltData, SaltLength + 4, U1, NULL, NULL, NULL, NULL);
byte Fn[SHA256_DIGEST_SIZE]; // Current function value.
memcpy(Fn, U1, sizeof(Fn)); // Function at first iteration.
uint CurCount[] = { Count-1, 16, 16 };
byte *CurValue[] = { Key , V1, V2 };
sha256_context ICtxOpt,RCtxOpt;
bool SetIOpt=false,SetROpt=false;
byte U2[SHA256_DIGEST_SIZE];
for (uint I = 0; I < 3; I++) // For output key and 2 supplementary values.
{
for (uint J = 0; J < CurCount[I]; J++)
{
// U2 = PRF (P, U1).
hmac_sha256(Pwd, PwdLength, U1, sizeof(U1), U2, &ICtxOpt, &SetIOpt, &RCtxOpt, &SetROpt);
memcpy(U1, U2, sizeof(U1));
for (uint K = 0; K < sizeof(Fn); K++) // Function ^= U.
Fn[K] ^= U1[K];
}
memcpy(CurValue[I], Fn, SHA256_DIGEST_SIZE);
}
cleandata(SaltData, sizeof(SaltData));
cleandata(Fn, sizeof(Fn));
cleandata(U1, sizeof(U1));
cleandata(U2, sizeof(U2));
}
bool CryptData::SetKey50(bool Encrypt,SecPassword *Password,const wchar *PwdW,
const byte *Salt,const byte *InitV,uint Lg2Cnt,byte *HashKey,
byte *PswCheck)
{
if (Lg2Cnt>CRYPT5_KDF_LG2_COUNT_MAX)
return false;
byte Key[32],PswCheckValue[SHA256_DIGEST_SIZE],HashKeyValue[SHA256_DIGEST_SIZE];
bool Found=false;
for (uint I=0;I<ASIZE(KDF5Cache);I++)
{
KDF5CacheItem *Item=KDF5Cache+I;
if (Item->Pwd==*Password && Item->Lg2Count==Lg2Cnt &&
memcmp(Item->Salt,Salt,SIZE_SALT50)==0)
{
memcpy(Key,Item->Key,sizeof(Key));
SecHideData(Key,sizeof(Key),false,false);
memcpy(PswCheckValue,Item->PswCheckValue,sizeof(PswCheckValue));
memcpy(HashKeyValue,Item->HashKeyValue,sizeof(HashKeyValue));
Found=true;
break;
}
}
if (!Found)
{
char PwdUtf[MAXPASSWORD*4];
WideToUtf(PwdW,PwdUtf,ASIZE(PwdUtf));
pbkdf2((byte *)PwdUtf,strlen(PwdUtf),Salt,SIZE_SALT50,Key,HashKeyValue,PswCheckValue,(1<<Lg2Cnt));
cleandata(PwdUtf,sizeof(PwdUtf));
KDF5CacheItem *Item=KDF5Cache+(KDF5CachePos++ % ASIZE(KDF5Cache));
Item->Lg2Count=Lg2Cnt;
Item->Pwd=*Password;
memcpy(Item->Salt,Salt,SIZE_SALT50);
memcpy(Item->Key,Key,sizeof(Item->Key));
memcpy(Item->PswCheckValue,PswCheckValue,sizeof(PswCheckValue));
memcpy(Item->HashKeyValue,HashKeyValue,sizeof(HashKeyValue));
SecHideData(Item->Key,sizeof(Item->Key),true,false);
}
if (HashKey!=NULL)
memcpy(HashKey,HashKeyValue,SHA256_DIGEST_SIZE);
if (PswCheck!=NULL)
{
memset(PswCheck,0,SIZE_PSWCHECK);
for (uint I=0;I<SHA256_DIGEST_SIZE;I++)
PswCheck[I%SIZE_PSWCHECK]^=PswCheckValue[I];
cleandata(PswCheckValue,sizeof(PswCheckValue));
}
// NULL initialization vector is possible if we only need the password
// check value for archive encryption header.
if (InitV!=NULL)
rin.Init(Encrypt, Key, 256, InitV);
cleandata(Key,sizeof(Key));
return true;
}
void ConvertHashToMAC(HashValue *Value,byte *Key)
{
if (Value->Type==HASH_CRC32)
{
byte RawCRC[4];
RawPut4(Value->CRC32,RawCRC);
byte Digest[SHA256_DIGEST_SIZE];
hmac_sha256(Key,SHA256_DIGEST_SIZE,RawCRC,sizeof(RawCRC),Digest,NULL,NULL,NULL,NULL);
Value->CRC32=0;
for (uint I=0;I<ASIZE(Digest);I++)
Value->CRC32^=Digest[I] << ((I & 3) * 8);
Value->CRC32&=0xffffffff; // In case the variable size is larger than 32-bit.
}
if (Value->Type==HASH_BLAKE2)
{
byte Digest[BLAKE2_DIGEST_SIZE];
hmac_sha256(Key,BLAKE2_DIGEST_SIZE,Value->Digest,sizeof(Value->Digest),Digest,NULL,NULL,NULL,NULL);
memcpy(Value->Digest,Digest,sizeof(Value->Digest));
}
}
#if 0
static void TestPBKDF2();
struct TestKDF {TestKDF() {TestPBKDF2();exit(0);}} GlobalTestKDF;
void TestPBKDF2() // Test PBKDF2 HMAC-SHA256
{
byte Key[32],V1[32],V2[32];
pbkdf2((byte *)"password", 8, (byte *)"salt", 4, Key, V1, V2, 1);
byte Res1[32]={0x12, 0x0f, 0xb6, 0xcf, 0xfc, 0xf8, 0xb3, 0x2c, 0x43, 0xe7, 0x22, 0x52, 0x56, 0xc4, 0xf8, 0x37, 0xa8, 0x65, 0x48, 0xc9, 0x2c, 0xcc, 0x35, 0x48, 0x08, 0x05, 0x98, 0x7c, 0xb7, 0x0b, 0xe1, 0x7b };
mprintf(L"\nPBKDF2 test1: %s", memcmp(Key,Res1,32)==0 ? L"OK":L"Failed");
pbkdf2((byte *)"password", 8, (byte *)"salt", 4, Key, V1, V2, 4096);
byte Res2[32]={0xc5, 0xe4, 0x78, 0xd5, 0x92, 0x88, 0xc8, 0x41, 0xaa, 0x53, 0x0d, 0xb6, 0x84, 0x5c, 0x4c, 0x8d, 0x96, 0x28, 0x93, 0xa0, 0x01, 0xce, 0x4e, 0x11, 0xa4, 0x96, 0x38, 0x73, 0xaa, 0x98, 0x13, 0x4a };
mprintf(L"\nPBKDF2 test2: %s", memcmp(Key,Res2,32)==0 ? L"OK":L"Failed");
pbkdf2((byte *)"just some long string pretending to be a password", 49, (byte *)"salt, salt, salt, a lot of salt", 31, Key, V1, V2, 65536);
byte Res3[32]={0x08, 0x0f, 0xa3, 0x1d, 0x42, 0x2d, 0xb0, 0x47, 0x83, 0x9b, 0xce, 0x3a, 0x3b, 0xce, 0x49, 0x51, 0xe2, 0x62, 0xb9, 0xff, 0x76, 0x2f, 0x57, 0xe9, 0xc4, 0x71, 0x96, 0xce, 0x4b, 0x6b, 0x6e, 0xbf};
mprintf(L"\nPBKDF2 test3: %s", memcmp(Key,Res3,32)==0 ? L"OK":L"Failed");
}
#endif