-
Notifications
You must be signed in to change notification settings - Fork 23
/
ir_emit.c
1048 lines (936 loc) · 27.5 KB
/
ir_emit.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* IR - Lightweight JIT Compilation Framework
* (Native code generator based on DynAsm)
* Copyright (C) 2022 Zend by Perforce.
* Authors: Dmitry Stogov <[email protected]>
*/
#include "ir.h"
#if defined(IR_TARGET_X86) || defined(IR_TARGET_X64)
# include "ir_x86.h"
#elif defined(IR_TARGET_AARCH64)
# include "ir_aarch64.h"
#else
# error "Unknown IR target"
#endif
#include "ir_private.h"
#ifndef _WIN32
# include <dlfcn.h>
#else
# define WIN32_LEAN_AND_MEAN
# include <windows.h>
# include <psapi.h>
#endif
#if defined(__linux__) || defined(__sun)
# include <alloca.h>
#endif
#define DASM_M_GROW(ctx, t, p, sz, need) \
do { \
size_t _sz = (sz), _need = (need); \
if (_sz < _need) { \
if (_sz < 16) _sz = 16; \
while (_sz < _need) _sz += _sz; \
(p) = (t *)ir_mem_realloc((p), _sz); \
(sz) = _sz; \
} \
} while(0)
#define DASM_M_FREE(ctx, p, sz) ir_mem_free(p)
#ifdef IR_DEBUG
# define DASM_CHECKS
#endif
typedef struct _ir_copy {
ir_type type;
ir_reg from;
ir_reg to;
} ir_copy;
typedef struct _ir_dessa_copy {
ir_type type;
int32_t from; /* negative - constant ref, [0..IR_REG_NUM) - CPU reg, [IR_REG_NUM...) - virtual reg */
int32_t to; /* [0..IR_REG_NUM) - CPU reg, [IR_REG_NUM...) - virtual reg */
} ir_dessa_copy;
#if IR_REG_INT_ARGS
static const int8_t _ir_int_reg_params[IR_REG_INT_ARGS];
#else
static const int8_t *_ir_int_reg_params;
#endif
#if IR_REG_FP_ARGS
static const int8_t _ir_fp_reg_params[IR_REG_FP_ARGS];
#else
static const int8_t *_ir_fp_reg_params;
#endif
static const ir_proto_t *ir_call_proto(const ir_ctx *ctx, ir_insn *insn)
{
if (IR_IS_CONST_REF(insn->op2)) {
const ir_insn *func = &ctx->ir_base[insn->op2];
if (func->op == IR_FUNC || func->op == IR_FUNC_ADDR) {
if (func->proto) {
return (const ir_proto_t *)ir_get_str(ctx, func->proto);
}
}
} else if (ctx->ir_base[insn->op2].op == IR_PROTO) {
return (const ir_proto_t *)ir_get_str(ctx, ctx->ir_base[insn->op2].op2);
}
return NULL;
}
#ifdef IR_HAVE_FASTCALL
static const int8_t _ir_int_fc_reg_params[IR_REG_INT_FCARGS];
static const int8_t *_ir_fp_fc_reg_params;
bool ir_is_fastcall(const ir_ctx *ctx, const ir_insn *insn)
{
if (sizeof(void*) == 4) {
if (IR_IS_CONST_REF(insn->op2)) {
const ir_insn *func = &ctx->ir_base[insn->op2];
if (func->op == IR_FUNC || func->op == IR_FUNC_ADDR) {
if (func->proto) {
const ir_proto_t *proto = (const ir_proto_t *)ir_get_str(ctx, func->proto);
return (proto->flags & IR_FASTCALL_FUNC) != 0;
}
}
} else if (ctx->ir_base[insn->op2].op == IR_PROTO) {
const ir_proto_t *proto = (const ir_proto_t *)ir_get_str(ctx, ctx->ir_base[insn->op2].op2);
return (proto->flags & IR_FASTCALL_FUNC) != 0;
}
return 0;
}
return 0;
}
#else
bool ir_is_fastcall(const ir_ctx *ctx, const ir_insn *insn)
{
return 0;
}
#endif
bool ir_is_vararg(const ir_ctx *ctx, ir_insn *insn)
{
const ir_proto_t *proto = ir_call_proto(ctx, insn);
if (proto) {
return (proto->flags & IR_VARARG_FUNC) != 0;
}
return 0;
}
IR_ALWAYS_INLINE uint32_t ir_rule(const ir_ctx *ctx, ir_ref ref)
{
IR_ASSERT(!IR_IS_CONST_REF(ref));
return ctx->rules[ref];
}
IR_ALWAYS_INLINE bool ir_in_same_block(ir_ctx *ctx, ir_ref ref)
{
return ref > ctx->bb_start;
}
static ir_reg ir_get_param_reg(const ir_ctx *ctx, ir_ref ref)
{
ir_use_list *use_list = &ctx->use_lists[1];
int i;
ir_ref use, *p;
ir_insn *insn;
int int_param = 0;
int fp_param = 0;
int int_reg_params_count = IR_REG_INT_ARGS;
int fp_reg_params_count = IR_REG_FP_ARGS;
const int8_t *int_reg_params = _ir_int_reg_params;
const int8_t *fp_reg_params = _ir_fp_reg_params;
#ifdef IR_HAVE_FASTCALL
if (sizeof(void*) == 4 && (ctx->flags & IR_FASTCALL_FUNC)) {
int_reg_params_count = IR_REG_INT_FCARGS;
fp_reg_params_count = IR_REG_FP_FCARGS;
int_reg_params = _ir_int_fc_reg_params;
fp_reg_params = _ir_fp_fc_reg_params;
}
#endif
for (i = 0, p = &ctx->use_edges[use_list->refs]; i < use_list->count; i++, p++) {
use = *p;
insn = &ctx->ir_base[use];
if (insn->op == IR_PARAM) {
if (IR_IS_TYPE_INT(insn->type)) {
if (use == ref) {
if (int_param < int_reg_params_count) {
return int_reg_params[int_param];
} else {
return IR_REG_NONE;
}
}
int_param++;
#ifdef _WIN64
/* WIN64 calling convention use common couter for int and fp registers */
fp_param++;
#endif
} else {
IR_ASSERT(IR_IS_TYPE_FP(insn->type));
if (use == ref) {
if (fp_param < fp_reg_params_count) {
return fp_reg_params[fp_param];
} else {
return IR_REG_NONE;
}
}
fp_param++;
#ifdef _WIN64
/* WIN64 calling convention use common couter for int and fp registers */
int_param++;
#endif
}
}
}
return IR_REG_NONE;
}
static int ir_get_args_regs(const ir_ctx *ctx, const ir_insn *insn, int8_t *regs)
{
int j, n;
ir_type type;
int int_param = 0;
int fp_param = 0;
int count = 0;
int int_reg_params_count = IR_REG_INT_ARGS;
int fp_reg_params_count = IR_REG_FP_ARGS;
const int8_t *int_reg_params = _ir_int_reg_params;
const int8_t *fp_reg_params = _ir_fp_reg_params;
#ifdef IR_HAVE_FASTCALL
if (sizeof(void*) == 4 && ir_is_fastcall(ctx, insn)) {
int_reg_params_count = IR_REG_INT_FCARGS;
fp_reg_params_count = IR_REG_FP_FCARGS;
int_reg_params = _ir_int_fc_reg_params;
fp_reg_params = _ir_fp_fc_reg_params;
}
#endif
n = insn->inputs_count;
n = IR_MIN(n, IR_MAX_REG_ARGS + 2);
for (j = 3; j <= n; j++) {
type = ctx->ir_base[ir_insn_op(insn, j)].type;
if (IR_IS_TYPE_INT(type)) {
if (int_param < int_reg_params_count) {
regs[j] = int_reg_params[int_param];
count = j + 1;
} else {
regs[j] = IR_REG_NONE;
}
int_param++;
#ifdef _WIN64
/* WIN64 calling convention use common couter for int and fp registers */
fp_param++;
#endif
} else {
IR_ASSERT(IR_IS_TYPE_FP(type));
if (fp_param < fp_reg_params_count) {
regs[j] = fp_reg_params[fp_param];
count = j + 1;
} else {
regs[j] = IR_REG_NONE;
}
fp_param++;
#ifdef _WIN64
/* WIN64 calling convention use common couter for int and fp registers */
int_param++;
#endif
}
}
return count;
}
static bool ir_is_same_mem_var(const ir_ctx *ctx, ir_ref r1, int32_t offset)
{
ir_live_interval *ival1;
int32_t o1;
if (IR_IS_CONST_REF(r1)) {
return 0;
}
IR_ASSERT(ctx->vregs[r1]);
ival1 = ctx->live_intervals[ctx->vregs[r1]];
IR_ASSERT(ival1);
o1 = ival1->stack_spill_pos;
IR_ASSERT(o1 != -1);
return o1 == offset;
}
void *ir_resolve_sym_name(const char *name)
{
void *handle = NULL;
void *addr;
#ifndef _WIN32
# ifdef RTLD_DEFAULT
handle = RTLD_DEFAULT;
# endif
addr = dlsym(handle, name);
#else
HMODULE mods[256];
DWORD cbNeeded;
uint32_t i = 0;
addr = NULL;
EnumProcessModules(GetCurrentProcess(), mods, sizeof(mods), &cbNeeded);
while(i < (cbNeeded / sizeof(HMODULE))) {
addr = GetProcAddress(mods[i], name);
if (addr) {
return addr;
}
i++;
}
#endif
return addr;
}
#ifdef IR_SNAPSHOT_HANDLER_DCL
IR_SNAPSHOT_HANDLER_DCL();
#endif
#if defined(IR_TARGET_X86) || defined(IR_TARGET_X64)
static void* ir_sym_addr(ir_ctx *ctx, const ir_insn *addr_insn)
{
const char *name = ir_get_str(ctx, addr_insn->val.name);
void *addr = (ctx->loader && ctx->loader->resolve_sym_name) ?
ctx->loader->resolve_sym_name(ctx->loader, name, 0) :
ir_resolve_sym_name(name);
return addr;
}
#endif
static void* ir_sym_val(ir_ctx *ctx, const ir_insn *addr_insn)
{
const char *name = ir_get_str(ctx, addr_insn->val.name);
void *addr = (ctx->loader && ctx->loader->resolve_sym_name) ?
ctx->loader->resolve_sym_name(ctx->loader, name, addr_insn->op == IR_FUNC) :
ir_resolve_sym_name(name);
IR_ASSERT(addr);
return addr;
}
static void *ir_call_addr(ir_ctx *ctx, ir_insn *insn, ir_insn *addr_insn)
{
void *addr;
IR_ASSERT(addr_insn->type == IR_ADDR);
if (addr_insn->op == IR_FUNC) {
addr = ir_sym_val(ctx, addr_insn);
} else {
IR_ASSERT(addr_insn->op == IR_ADDR || addr_insn->op == IR_FUNC_ADDR);
addr = (void*)addr_insn->val.addr;
}
return addr;
}
static void *ir_jmp_addr(ir_ctx *ctx, ir_insn *insn, ir_insn *addr_insn)
{
void *addr = ir_call_addr(ctx, insn, addr_insn);
#ifdef IR_SNAPSHOT_HANDLER
if (ctx->ir_base[insn->op1].op == IR_SNAPSHOT) {
addr = IR_SNAPSHOT_HANDLER(ctx, insn->op1, &ctx->ir_base[insn->op1], addr);
}
#endif
return addr;
}
static int8_t ir_get_fused_reg(ir_ctx *ctx, ir_ref root, ir_ref ref_and_op)
{
if (ctx->fused_regs) {
char key[10];
ir_ref val;
memcpy(key, &root, sizeof(ir_ref));
memcpy(key + 4, &ref_and_op, sizeof(ir_ref));
val = ir_strtab_find(ctx->fused_regs, key, 8);
if (val) {
return val;
}
}
return ((int8_t*)ctx->regs)[ref_and_op];
}
#if defined(__GNUC__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Warray-bounds"
# pragma GCC diagnostic ignored "-Wimplicit-fallthrough"
#endif
#if defined(IR_TARGET_X86) || defined(IR_TARGET_X64)
# include "dynasm/dasm_proto.h"
# include "dynasm/dasm_x86.h"
#elif defined(IR_TARGET_AARCH64)
# include "dynasm/dasm_proto.h"
static int ir_add_veneer(dasm_State *Dst, void *buffer, uint32_t ins, int *b, uint32_t *cp, ptrdiff_t offset);
# define DASM_ADD_VENEER ir_add_veneer
# include "dynasm/dasm_arm64.h"
#else
# error "Unknown IR target"
#endif
#if defined(__GNUC__)
# pragma GCC diagnostic pop
#endif
/* Forward Declarations */
static void ir_emit_osr_entry_loads(ir_ctx *ctx, int b, ir_block *bb);
static int ir_parallel_copy(ir_ctx *ctx, ir_copy *copies, int count, ir_reg tmp_reg, ir_reg tmp_fp_reg);
static void ir_emit_dessa_moves(ir_ctx *ctx, int b, ir_block *bb);
typedef struct _ir_common_backend_data {
ir_reg_alloc_data ra_data;
uint32_t dessa_from_block;
dasm_State *dasm_state;
ir_bitset emit_constants;
} ir_common_backend_data;
static int ir_const_label(ir_ctx *ctx, ir_ref ref)
{
ir_common_backend_data *data = ctx->data;
int label = ctx->cfg_blocks_count - ref;
IR_ASSERT(IR_IS_CONST_REF(ref));
ir_bitset_incl(data->emit_constants, -ref);
return label;
}
#if defined(IR_TARGET_X86) || defined(IR_TARGET_X64)
# include "ir_emit_x86.h"
#elif defined(IR_TARGET_AARCH64)
# include "ir_emit_aarch64.h"
#else
# error "Unknown IR target"
#endif
static IR_NEVER_INLINE void ir_emit_osr_entry_loads(ir_ctx *ctx, int b, ir_block *bb)
{
ir_list *list = (ir_list*)ctx->osr_entry_loads;
int pos = 0, count, i;
ir_ref ref;
IR_ASSERT(ctx->binding);
IR_ASSERT(list);
while (1) {
i = ir_list_at(list, pos);
if (b == i) {
break;
}
IR_ASSERT(i != 0); /* end marker */
pos++;
count = ir_list_at(list, pos);
pos += count + 1;
}
pos++;
count = ir_list_at(list, pos);
pos++;
for (i = 0; i < count; i++, pos++) {
ref = ir_list_at(list, pos);
IR_ASSERT(ref >= 0 && ctx->vregs[ref] && ctx->live_intervals[ctx->vregs[ref]]);
if (!(ctx->live_intervals[ctx->vregs[ref]]->flags & IR_LIVE_INTERVAL_SPILLED)) {
/* not spilled */
ir_reg reg = ctx->live_intervals[ctx->vregs[ref]]->reg;
ir_type type = ctx->ir_base[ref].type;
int32_t offset = -ir_binding_find(ctx, ref);
IR_ASSERT(offset > 0);
ir_emit_load_mem(ctx, type, reg, IR_MEM_BO(ctx->spill_base, offset));
} else {
IR_ASSERT(ctx->live_intervals[ctx->vregs[ref]]->flags & IR_LIVE_INTERVAL_SPILL_SPECIAL);
}
}
}
/*
* Parallel copy sequentialization algorithm
*
* The implementation is based on algorithm 1 desriebed in
* "Revisiting Out-of-SSA Translation for Correctness, Code Quality and Efficiency",
* Benoit Boissinot, Alain Darte, Fabrice Rastello, Benoit Dupont de Dinechin, Christophe Guillon.
* 2009 International Symposium on Code Generation and Optimization, Seattle, WA, USA, 2009,
* pp. 114-125, doi: 10.1109/CGO.2009.19.
*/
static int ir_parallel_copy(ir_ctx *ctx, ir_copy *copies, int count, ir_reg tmp_reg, ir_reg tmp_fp_reg)
{
int i;
int8_t *pred, *loc, *types;
ir_reg to, from;
ir_type type;
ir_regset todo, ready, srcs;
if (count == 1) {
to = copies[0].to;
from = copies[0].from;
IR_ASSERT(from != to);
type = copies[0].type;
if (IR_IS_TYPE_INT(type)) {
ir_emit_mov(ctx, type, to, from);
} else {
ir_emit_fp_mov(ctx, type, to, from);
}
return 1;
}
loc = alloca(IR_REG_NUM * 3 * sizeof(int8_t));
pred = loc + IR_REG_NUM;
types = pred + IR_REG_NUM;
todo = IR_REGSET_EMPTY;
srcs = IR_REGSET_EMPTY;
for (i = 0; i < count; i++) {
from = copies[i].from;
to = copies[i].to;
IR_ASSERT(from != to);
IR_REGSET_INCL(srcs, from);
loc[from] = from;
pred[to] = from;
types[from] = copies[i].type;
IR_ASSERT(!IR_REGSET_IN(todo, to));
IR_REGSET_INCL(todo, to);
}
ready = IR_REGSET_DIFFERENCE(todo, srcs);
if (ready == todo) {
for (i = 0; i < count; i++) {
from = copies[i].from;
to = copies[i].to;
IR_ASSERT(from != to);
type = copies[i].type;
if (IR_IS_TYPE_INT(type)) {
ir_emit_mov(ctx, type, to, from);
} else {
ir_emit_fp_mov(ctx, type, to, from);
}
}
return 1;
}
/* temporary registers can't be the same as some of the destinations */
IR_ASSERT(tmp_reg == IR_REG_NONE || !IR_REGSET_IN(todo, tmp_reg));
IR_ASSERT(tmp_fp_reg == IR_REG_NONE || !IR_REGSET_IN(todo, tmp_fp_reg));
/* first we resolve all "windmill blades" - trees (this doesn't requre temporary registers) */
while (ready != IR_REGSET_EMPTY) {
ir_reg r;
to = ir_regset_pop_first(&ready);
from = pred[to];
r = loc[from];
type = types[from];
if (IR_IS_TYPE_INT(type)) {
ir_emit_mov_ext(ctx, type, to, r);
} else {
ir_emit_fp_mov(ctx, type, to, r);
}
IR_REGSET_EXCL(todo, to);
loc[from] = to;
if (from == r && IR_REGSET_IN(todo, from)) {
IR_REGSET_INCL(ready, from);
}
}
if (todo == IR_REGSET_EMPTY) {
return 1;
}
/* at this point the sources that are the same as temoraries are already moved */
IR_ASSERT(tmp_reg == IR_REG_NONE || !IR_REGSET_IN(srcs, tmp_reg) || pred[loc[tmp_reg]] == tmp_reg);
IR_ASSERT(tmp_fp_reg == IR_REG_NONE || !IR_REGSET_IN(srcs, tmp_fp_reg) || pred[loc[tmp_fp_reg]] == tmp_fp_reg);
/* now we resolve all "windmill axles" - cycles (this reuires temporary registers) */
while (todo != IR_REGSET_EMPTY) {
to = ir_regset_pop_first(&todo);
from = pred[to];
IR_ASSERT(to != loc[from]);
type = types[from];
if (IR_IS_TYPE_INT(type)) {
#ifdef IR_HAVE_SWAP_INT
if (pred[from] == to) {
if (ir_type_size[types[to]] > ir_type_size[type]) {
type = types[to];
}
ir_emit_swap(ctx, type, to, from);
IR_REGSET_EXCL(todo, from);
loc[to] = from;
loc[from] = to;
continue;
}
#endif
IR_ASSERT(tmp_reg != IR_REG_NONE);
IR_ASSERT(tmp_reg >= IR_REG_GP_FIRST && tmp_reg <= IR_REG_GP_LAST);
ir_emit_mov(ctx, type, tmp_reg, to);
loc[to] = tmp_reg;
} else {
#ifdef IR_HAVE_SWAP_FP
if (pred[from] == to && types[to] == type) {
ir_emit_swap_fp(ctx, type, to, from);
IR_REGSET_EXCL(todo, from);
loc[to] = from;
loc[from] = to;
continue;
}
#endif
IR_ASSERT(tmp_fp_reg != IR_REG_NONE);
IR_ASSERT(tmp_fp_reg >= IR_REG_FP_FIRST && tmp_fp_reg <= IR_REG_FP_LAST);
ir_emit_fp_mov(ctx, type, tmp_fp_reg, to);
loc[to] = tmp_fp_reg;
}
while (1) {
ir_reg r;
from = pred[to];
r = loc[from];
type = types[from];
if (IR_IS_TYPE_INT(type)) {
ir_emit_mov_ext(ctx, type, to, r);
} else {
ir_emit_fp_mov(ctx, type, to, r);
}
IR_REGSET_EXCL(todo, to);
loc[from] = to;
if (from == r && IR_REGSET_IN(todo, from)) {
to = from;
} else {
break;
}
}
}
return 1;
}
static void ir_emit_dessa_move(ir_ctx *ctx, ir_type type, ir_ref to, ir_ref from, ir_reg tmp_reg, ir_reg tmp_fp_reg)
{
ir_mem mem_from, mem_to;
IR_ASSERT(from != to);
if (to < IR_REG_NUM) {
if (IR_IS_CONST_REF(from)) {
if (-from < ctx->consts_count) {
/* constant reference */
ir_emit_load(ctx, type, to, from);
} else {
/* local variable address */
ir_load_local_addr(ctx, to, -from - ctx->consts_count);
}
} else if (from < IR_REG_NUM) {
if (IR_IS_TYPE_INT(type)) {
ir_emit_mov(ctx, type, to, from);
} else {
ir_emit_fp_mov(ctx, type, to, from);
}
} else {
mem_from = ir_vreg_spill_slot(ctx, from - IR_REG_NUM);
ir_emit_load_mem(ctx, type, to, mem_from);
}
} else {
mem_to = ir_vreg_spill_slot(ctx, to - IR_REG_NUM);
if (IR_IS_CONST_REF(from)) {
if (-from < ctx->consts_count) {
/* constant reference */
#if defined(IR_TARGET_X86) || defined(IR_TARGET_X64)
if (IR_IS_TYPE_INT(type)
&& !IR_IS_SYM_CONST(ctx->ir_base[from].op)
&& (ir_type_size[type] != 8 || IR_IS_SIGNED_32BIT(ctx->ir_base[from].val.i64))) {
ir_emit_store_mem_imm(ctx, type, mem_to, ctx->ir_base[from].val.i32);
return;
}
#endif
ir_reg tmp = IR_IS_TYPE_INT(type) ? tmp_reg : tmp_fp_reg;
IR_ASSERT(tmp != IR_REG_NONE);
ir_emit_load(ctx, type, tmp, from);
ir_emit_store_mem(ctx, type, mem_to, tmp);
} else {
/* local variable address */
IR_ASSERT(IR_IS_TYPE_INT(type));
IR_ASSERT(tmp_reg != IR_REG_NONE);
ir_load_local_addr(ctx, tmp_reg, -from - ctx->consts_count);
ir_emit_store_mem(ctx, type, mem_to, tmp_reg);
}
} else if (from < IR_REG_NUM) {
ir_emit_store_mem(ctx, type, mem_to, from);
} else {
mem_from = ir_vreg_spill_slot(ctx, from - IR_REG_NUM);
IR_ASSERT(IR_MEM_VAL(mem_to) != IR_MEM_VAL(mem_from));
ir_reg tmp = IR_IS_TYPE_INT(type) ? tmp_reg : tmp_fp_reg;
IR_ASSERT(tmp != IR_REG_NONE);
ir_emit_load_mem(ctx, type, tmp, mem_from);
ir_emit_store_mem(ctx, type, mem_to, tmp);
}
}
}
IR_ALWAYS_INLINE void ir_dessa_resolve_cycle(ir_ctx *ctx, int32_t *pred, int32_t *loc, int8_t *types, ir_bitset todo, int32_t to, ir_reg tmp_reg, ir_reg tmp_fp_reg)
{
ir_ref from;
ir_mem tmp_spill_slot;
ir_type type;
IR_MEM_VAL(tmp_spill_slot) = 0;
IR_ASSERT(!IR_IS_CONST_REF(to));
from = pred[to];
type = types[from];
IR_ASSERT(!IR_IS_CONST_REF(from));
IR_ASSERT(from != to);
IR_ASSERT(loc[from] == from);
if (IR_IS_TYPE_INT(type)) {
#ifdef IR_HAVE_SWAP_INT
if (pred[from] == to && to < IR_REG_NUM && from < IR_REG_NUM) {
/* a simple cycle from 2 elements */
if (ir_type_size[types[to]] > ir_type_size[type]) {
type = types[to];
}
ir_emit_swap(ctx, type, to, from);
ir_bitset_excl(todo, from);
ir_bitset_excl(todo, to);
loc[to] = from;
loc[from] = to;
return;
}
#endif
IR_ASSERT(tmp_reg != IR_REG_NONE);
IR_ASSERT(tmp_reg >= IR_REG_GP_FIRST && tmp_reg <= IR_REG_GP_LAST);
loc[to] = tmp_reg;
if (to < IR_REG_NUM) {
ir_emit_mov(ctx, type, tmp_reg, to);
} else {
ir_emit_load_mem_int(ctx, type, tmp_reg, ir_vreg_spill_slot(ctx, to - IR_REG_NUM));
}
} else {
#ifdef IR_HAVE_SWAP_FP
if (pred[from] == to && to < IR_REG_NUM && from < IR_REG_NUM && types[to] == type) {
/* a simple cycle from 2 elements */
ir_emit_swap_fp(ctx, type, to, from);
IR_REGSET_EXCL(todo, from);
IR_REGSET_EXCL(todo, to);
loc[to] = from;
loc[from] = to;
return;
}
#endif
IR_ASSERT(tmp_fp_reg != IR_REG_NONE);
IR_ASSERT(tmp_fp_reg >= IR_REG_FP_FIRST && tmp_fp_reg <= IR_REG_FP_LAST);
loc[to] = tmp_fp_reg;
if (to < IR_REG_NUM) {
ir_emit_fp_mov(ctx, type, tmp_fp_reg, to);
} else {
ir_emit_load_mem_fp(ctx, type, tmp_fp_reg, ir_vreg_spill_slot(ctx, to - IR_REG_NUM));
}
}
while (1) {
int32_t r;
from = pred[to];
r = loc[from];
type = types[to];
if (from == r && ir_bitset_in(todo, from)) {
/* Memory to memory move inside an isolated or "blocked" cycle requres an additional temporary register */
if (to >= IR_REG_NUM && r >= IR_REG_NUM) {
ir_reg tmp = IR_IS_TYPE_INT(type) ? tmp_reg : tmp_fp_reg;
if (!IR_MEM_VAL(tmp_spill_slot)) {
/* Free a register, saving it in a temporary spill slot */
tmp_spill_slot = IR_MEM_BO(IR_REG_STACK_POINTER, -16);
ir_emit_store_mem(ctx, type, tmp_spill_slot, tmp);
}
ir_emit_dessa_move(ctx, type, to, r, tmp_reg, tmp_fp_reg);
} else {
ir_emit_dessa_move(ctx, type, to, r, IR_REG_NONE, IR_REG_NONE);
}
ir_bitset_excl(todo, to);
loc[from] = to;
to = from;
} else {
break;
}
}
type = types[to];
if (IR_MEM_VAL(tmp_spill_slot)) {
ir_emit_load_mem(ctx, type, IR_IS_TYPE_INT(type) ? tmp_reg : tmp_fp_reg, tmp_spill_slot);
}
ir_emit_dessa_move(ctx, type, to, loc[from], IR_REG_NONE, IR_REG_NONE);
ir_bitset_excl(todo, to);
loc[from] = to;
}
static int ir_dessa_parallel_copy(ir_ctx *ctx, ir_dessa_copy *copies, int count, ir_reg tmp_reg, ir_reg tmp_fp_reg)
{
int i;
int32_t *pred, *loc, to, from;
int8_t *types;
ir_type type;
uint32_t len;
ir_bitset todo, ready, srcs, visited;
if (count == 1) {
to = copies[0].to;
from = copies[0].from;
IR_ASSERT(from != to);
type = copies[0].type;
ir_emit_dessa_move(ctx, type, to, from, tmp_reg, tmp_fp_reg);
return 1;
}
len = IR_REG_NUM + ctx->vregs_count + 1;
todo = ir_bitset_malloc(len);
srcs = ir_bitset_malloc(len);
loc = ir_mem_malloc(len * 2 * sizeof(int32_t) + len * sizeof(int8_t));
pred = loc + len;
types = (int8_t*)(pred + len);
for (i = 0; i < count; i++) {
from = copies[i].from;
to = copies[i].to;
IR_ASSERT(from != to);
if (!IR_IS_CONST_REF(from)) {
ir_bitset_incl(srcs, from);
loc[from] = from;
}
pred[to] = from;
types[to] = copies[i].type;
IR_ASSERT(!ir_bitset_in(todo, to));
ir_bitset_incl(todo, to);
}
/* temporary registers can't be the same as some of the sources */
IR_ASSERT(tmp_reg == IR_REG_NONE || !ir_bitset_in(srcs, tmp_reg));
IR_ASSERT(tmp_fp_reg == IR_REG_NONE || !ir_bitset_in(srcs, tmp_fp_reg));
/* first we resolve all "windmill blades" - trees, that don't set temporary registers */
ready = ir_bitset_malloc(len);
ir_bitset_copy(ready, todo, ir_bitset_len(len));
ir_bitset_difference(ready, srcs, ir_bitset_len(len));
if (tmp_reg != IR_REG_NONE) {
ir_bitset_excl(ready, tmp_reg);
}
if (tmp_fp_reg != IR_REG_NONE) {
ir_bitset_excl(ready, tmp_fp_reg);
}
while ((to = ir_bitset_pop_first(ready, ir_bitset_len(len))) >= 0) {
ir_bitset_excl(todo, to);
type = types[to];
from = pred[to];
if (IR_IS_CONST_REF(from)) {
ir_emit_dessa_move(ctx, type, to, from, tmp_reg, tmp_fp_reg);
} else {
int32_t r = loc[from];
ir_emit_dessa_move(ctx, type, to, r, tmp_reg, tmp_fp_reg);
loc[from] = to;
if (from == r && ir_bitset_in(todo, from) && from != tmp_reg && from != tmp_fp_reg) {
ir_bitset_incl(ready, from);
}
}
}
/* then we resolve all "windmill axles" - cycles (this requres temporary registers) */
visited = ir_bitset_malloc(len);
ir_bitset_copy(ready, todo, ir_bitset_len(len));
ir_bitset_intersection(ready, srcs, ir_bitset_len(len));
while ((to = ir_bitset_first(ready, ir_bitset_len(len))) >= 0) {
ir_bitset_clear(visited, ir_bitset_len(len));
ir_bitset_incl(visited, to);
to = pred[to];
while (!IR_IS_CONST_REF(to) && ir_bitset_in(ready, to)) {
to = pred[to];
if (IR_IS_CONST_REF(to)) {
break;
} else if (ir_bitset_in(visited, to)) {
/* We found a cycle. Resolve it. */
ir_bitset_incl(visited, to);
ir_dessa_resolve_cycle(ctx, pred, loc, types, todo, to, tmp_reg, tmp_fp_reg);
break;
}
ir_bitset_incl(visited, to);
}
ir_bitset_difference(ready, visited, ir_bitset_len(len));
}
/* finally we resolve remaining "windmill blades" - trees that set temporary registers */
ir_bitset_copy(ready, todo, ir_bitset_len(len));
ir_bitset_difference(ready, srcs, ir_bitset_len(len));
while ((to = ir_bitset_pop_first(ready, ir_bitset_len(len))) >= 0) {
ir_bitset_excl(todo, to);
type = types[to];
from = pred[to];
if (IR_IS_CONST_REF(from)) {
ir_emit_dessa_move(ctx, type, to, from, tmp_reg, tmp_fp_reg);
} else {
int32_t r = loc[from];
ir_emit_dessa_move(ctx, type, to, r, tmp_reg, tmp_fp_reg);
loc[from] = to;
if (from == r && ir_bitset_in(todo, from)) {
ir_bitset_incl(ready, from);
}
}
}
IR_ASSERT(ir_bitset_empty(todo, ir_bitset_len(len)));
ir_mem_free(visited);
ir_mem_free(ready);
ir_mem_free(loc);
ir_mem_free(srcs);
ir_mem_free(todo);
return 1;
}
static void ir_emit_dessa_moves(ir_ctx *ctx, int b, ir_block *bb)
{
uint32_t succ, k, n = 0;
ir_block *succ_bb;
ir_use_list *use_list;
ir_ref i, *p;
ir_dessa_copy *copies;
ir_reg tmp_reg = ctx->regs[bb->end][0];
ir_reg tmp_fp_reg = ctx->regs[bb->end][1];
IR_ASSERT(bb->successors_count == 1);
succ = ctx->cfg_edges[bb->successors];
succ_bb = &ctx->cfg_blocks[succ];
IR_ASSERT(succ_bb->predecessors_count > 1);
use_list = &ctx->use_lists[succ_bb->start];
k = ir_phi_input_number(ctx, succ_bb, b);
copies = alloca(use_list->count * sizeof(ir_dessa_copy));
for (i = 0, p = &ctx->use_edges[use_list->refs]; i < use_list->count; i++, p++) {
ir_ref ref = *p;
ir_insn *insn = &ctx->ir_base[ref];
if (insn->op == IR_PHI) {
ir_ref input = ir_insn_op(insn, k);
ir_reg src = ir_get_alocated_reg(ctx, ref, k);
ir_reg dst = ctx->regs[ref][0];
ir_ref from, to;
IR_ASSERT(dst == IR_REG_NONE || !IR_REG_SPILLED(dst));
if (IR_IS_CONST_REF(input)) {
from = input;
} else if (ir_rule(ctx, input) == IR_STATIC_ALLOCA) {
/* encode local variable address */
from = -(ctx->consts_count + input);
} else {
from = (src != IR_REG_NONE && !IR_REG_SPILLED(src)) ?
(ir_ref)src : (ir_ref)(IR_REG_NUM + ctx->vregs[input]);
}
to = (dst != IR_REG_NONE) ?
(ir_ref)dst : (ir_ref)(IR_REG_NUM + ctx->vregs[ref]);
if (to != from) {
if (to >= IR_REG_NUM
&& from >= IR_REG_NUM
&& IR_MEM_VAL(ir_vreg_spill_slot(ctx, from - IR_REG_NUM)) ==
IR_MEM_VAL(ir_vreg_spill_slot(ctx, to - IR_REG_NUM))) {
/* It's possible that different virtual registers share the same special spill slot */
// TODO: See ext/opcache/tests/jit/gh11917.phpt failure on Linux 32-bit
continue;
}
copies[n].type = insn->type;
copies[n].from = from;
copies[n].to = to;
n++;
}
}
}
if (n > 0) {
ir_dessa_parallel_copy(ctx, copies, n, tmp_reg, tmp_fp_reg);
}
}
int ir_match(ir_ctx *ctx)
{
uint32_t b;
ir_ref start, ref, *prev_ref;
ir_block *bb;
ir_insn *insn;
uint32_t entries_count = 0;
ctx->rules = ir_mem_calloc(ctx->insns_count, sizeof(uint32_t));
prev_ref = ctx->prev_ref;
if (!prev_ref) {
ir_build_prev_refs(ctx);
prev_ref = ctx->prev_ref;
}
if (ctx->entries_count) {
ctx->entries = ir_mem_malloc(ctx->entries_count * sizeof(ir_ref));
}
for (b = ctx->cfg_blocks_count, bb = ctx->cfg_blocks + b; b > 0; b--, bb--) {
IR_ASSERT(!(bb->flags & IR_BB_UNREACHABLE));
start = bb->start;
if (UNEXPECTED(bb->flags & IR_BB_ENTRY)) {
IR_ASSERT(entries_count < ctx->entries_count);
insn = &ctx->ir_base[start];
IR_ASSERT(insn->op == IR_ENTRY);
insn->op3 = entries_count;
ctx->entries[entries_count] = b;
entries_count++;
}
ctx->rules[start] = IR_SKIPPED | IR_NOP;
ref = bb->end;
if (bb->successors_count == 1) {
insn = &ctx->ir_base[ref];
if (insn->op == IR_END || insn->op == IR_LOOP_END) {
ctx->rules[ref] = insn->op;