-
Notifications
You must be signed in to change notification settings - Fork 23
/
ir_gcm.c
1363 lines (1235 loc) · 35.5 KB
/
ir_gcm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* IR - Lightweight JIT Compilation Framework
* (GCM - Global Code Motion and Scheduler)
* Copyright (C) 2022 Zend by Perforce.
* Authors: Dmitry Stogov <[email protected]>
*
* The GCM algorithm is based on Cliff Click's publication
* See: C. Click. "Global code motion, global value numbering" Submitted to PLDI'95.
*/
#include "ir.h"
#include "ir_private.h"
#define IR_GCM_IS_SCHEDULED_EARLY(b) (((int32_t)(b)) < 0)
#define IR_GCM_EARLY_BLOCK(b) ((uint32_t)-((int32_t)(b)))
#define IR_GCM_SPLIT 1
#define IR_SCHEDULE_SWAP_OPS 1
static uint32_t ir_gcm_schedule_early(ir_ctx *ctx, ir_ref ref, ir_list *queue_late)
{
ir_ref n, *p, input;
ir_insn *insn;
uint32_t dom_depth;
uint32_t b, result;
insn = &ctx->ir_base[ref];
IR_ASSERT(insn->op != IR_PARAM && insn->op != IR_VAR);
IR_ASSERT(insn->op != IR_PHI && insn->op != IR_PI);
result = 1;
dom_depth = 0;
n = insn->inputs_count;
for (p = insn->ops + 1; n > 0; p++, n--) {
input = *p;
if (input > 0) {
b = ctx->cfg_map[input];
if (IR_GCM_IS_SCHEDULED_EARLY(b)) {
b = IR_GCM_EARLY_BLOCK(b);
} else if (!b) {
b = ir_gcm_schedule_early(ctx, input, queue_late);
}
if (dom_depth < ctx->cfg_blocks[b].dom_depth) {
dom_depth = ctx->cfg_blocks[b].dom_depth;
result = b;
}
}
}
ctx->cfg_map[ref] = IR_GCM_EARLY_BLOCK(result);
ir_list_push_unchecked(queue_late, ref);
return result;
}
/* Last Common Ancestor */
static uint32_t ir_gcm_find_lca(ir_ctx *ctx, uint32_t b1, uint32_t b2)
{
uint32_t dom_depth;
dom_depth = ctx->cfg_blocks[b2].dom_depth;
while (ctx->cfg_blocks[b1].dom_depth > dom_depth) {
b1 = ctx->cfg_blocks[b1].dom_parent;
}
dom_depth = ctx->cfg_blocks[b1].dom_depth;
while (ctx->cfg_blocks[b2].dom_depth > dom_depth) {
b2 = ctx->cfg_blocks[b2].dom_parent;
}
while (b1 != b2) {
b1 = ctx->cfg_blocks[b1].dom_parent;
b2 = ctx->cfg_blocks[b2].dom_parent;
}
return b2;
}
static uint32_t ir_gcm_select_best_block(ir_ctx *ctx, ir_ref ref, uint32_t lca)
{
ir_block *bb = &ctx->cfg_blocks[lca];
uint32_t loop_depth = bb->loop_depth;
uint32_t flags, best, b;
if (!loop_depth) {
return lca;
}
#if 0 /* This is not necessary anymore. Conditions may be fused with IF across BBs. */
if (ctx->ir_base[ref].op >= IR_EQ && ctx->ir_base[ref].op <= IR_UGT) {
ir_use_list *use_list = &ctx->use_lists[ref];
if (use_list->count == 1) {
ir_ref use = ctx->use_edges[use_list->refs];
ir_insn *insn = &ctx->ir_base[use];
if (insn->op == IR_IF || insn->op == IR_GUARD || insn->op == IR_GUARD_NOT) {
/* Don't hoist invariant comparison */
return lca;
}
}
}
#endif
flags = (bb->flags & IR_BB_LOOP_HEADER) ? bb->flags : ctx->cfg_blocks[bb->loop_header].flags;
if ((flags & IR_BB_LOOP_WITH_ENTRY)
&& !(ctx->binding && ir_binding_find(ctx, ref))) {
/* Don't move loop invariant code across an OSR ENTRY if we can't restore it */
return lca;
}
best = b = lca;
do {
b = bb->dom_parent;
bb = &ctx->cfg_blocks[b];
if (bb->loop_depth < loop_depth) {
if (!bb->loop_depth) {
#if 1
/* Avoid LICM if LOOP doesn't have a pre-header block */
ir_block *loop_bb = &ctx->cfg_blocks[best];
if (!(loop_bb->flags & IR_BB_LOOP_HEADER)) {
loop_bb = &ctx->cfg_blocks[loop_bb->loop_header];
}
if (loop_bb->predecessors_count > 2) {
int n = loop_bb->predecessors_count;
uint32_t *p = ctx->cfg_edges + loop_bb->predecessors;
while (n && *p != b) {
n--; p++;
}
if (!n) {
break;
}
}
#endif
best = b;
break;
}
flags = (bb->flags & IR_BB_LOOP_HEADER) ? bb->flags : ctx->cfg_blocks[bb->loop_header].flags;
if ((flags & IR_BB_LOOP_WITH_ENTRY)
&& !(ctx->binding && ir_binding_find(ctx, ref))) {
break;
}
loop_depth = bb->loop_depth;
best = b;
}
} while (b != ctx->cfg_map[ref]);
return best;
}
#if IR_GCM_SPLIT
/* Partially Dead Code Elimination through splitting the node and sunking the clones
*
* This code is based on the Benedikt Meurer's idea first implemented in V8.
* See: https://codereview.chromium.org/899433005
*/
typedef struct _ir_gcm_split_data {
ir_sparse_set totally_useful;
ir_list worklist;
} ir_gcm_split_data;
static void _push_predecessors(ir_ctx *ctx, ir_block *bb, ir_gcm_split_data *data)
{
uint32_t *p, i, n = bb->predecessors_count;
IR_ASSERT(n > 0);
p = ctx->cfg_edges + bb->predecessors;
do {
i = *p;
if (!ir_sparse_set_in(&data->totally_useful, i)) {
ir_list_push(&data->worklist, i);
}
p++;
n--;
} while (n > 0);
}
static bool _check_successors(ir_ctx *ctx, ir_block *bb, ir_gcm_split_data *data)
{
uint32_t *p, i, n = bb->successors_count;
if (n <= 1) {
IR_ASSERT(ir_sparse_set_in(&data->totally_useful, ctx->cfg_edges[bb->successors]));
return 1;
}
p = ctx->cfg_edges + bb->successors;
do {
i = *p;
if (!ir_sparse_set_in(&data->totally_useful, i)) {
return 0;
}
p++;
n--;
} while (n > 0);
return 1;
}
static bool ir_split_partially_dead_node(ir_ctx *ctx, ir_ref ref, uint32_t b)
{
ir_use_list *use_list;
ir_insn *insn;
ir_ref n, *p, use;
uint32_t i;
ir_gcm_split_data *data = ctx->data;
IR_ASSERT(b > 0 && b <= ctx->cfg_blocks_count);
/* 1. Find a set of blocks where the node is TOTALLY_USEFUL (not PARTIALLY_DEAD)
* 1.1. Collect the blocks where the node is really USED.
*/
ir_sparse_set_clear(&data->totally_useful);
use_list = &ctx->use_lists[ref];
n = use_list->count;
for (p = &ctx->use_edges[use_list->refs]; n > 0; p++, n--) {
use = *p;
insn = &ctx->ir_base[use];
if (insn->op == IR_PHI) {
ir_ref *p = insn->ops + 2; /* PHI data inputs */
ir_ref *q = ctx->ir_base[insn->op1].ops + 1; /* MERGE inputs */
ir_ref n = insn->inputs_count - 1;
for (;n > 0; p++, q++, n--) {
if (*p == ref) {
i = ctx->cfg_map[*q];
IR_ASSERT(i > 0 && i <= ctx->cfg_blocks_count);
if (!ir_sparse_set_in(&data->totally_useful, i)) {
if (i == b) return 0; /* node is totally-useful in the scheduled block */
ir_sparse_set_add(&data->totally_useful, i);
}
}
}
} else {
i = ctx->cfg_map[use];
if (!i) {
continue;
}
IR_ASSERT(i > 0 && i <= ctx->cfg_blocks_count);
if (!ir_sparse_set_in(&data->totally_useful, i)) {
if (i == b) return 0; /* node is totally-useful in the scheduled block */
ir_sparse_set_add(&data->totally_useful, i);
}
}
}
#ifdef IR_DEBUG
if (ctx->flags & IR_DEBUG_GCM_SPLIT) {
bool first = 1;
fprintf(stderr, "*** Split partially dead node d_%d scheduled to BB%d\n", ref, b);
IR_SPARSE_SET_FOREACH(&data->totally_useful, i) {
if (first) {
fprintf(stderr, "\td_%d is USED in [BB%d", ref, i);
first = 0;
} else {
fprintf(stderr, ", BB%d", i);
}
} IR_SPARSE_SET_FOREACH_END();
fprintf(stderr, "]\n");
}
#endif
/* 1.2. Iteratively check the predecessors of already found TOTALLY_USEFUL blocks and
* add them into TOTALLY_USEFUL set if all of their sucessors are already there.
*/
IR_SPARSE_SET_FOREACH(&data->totally_useful, i) {
_push_predecessors(ctx, &ctx->cfg_blocks[i], data);
} IR_SPARSE_SET_FOREACH_END();
while (ir_list_len(&data->worklist)) {
i = ir_list_pop(&data->worklist);
if (!ir_sparse_set_in(&data->totally_useful, i)) {
ir_block *bb = &ctx->cfg_blocks[i];
if (_check_successors(ctx, bb, data)) {
if (i == b) {
/* node is TOTALLY_USEFUL in the scheduled block */
ir_list_clear(&data->worklist);
return 0;
}
ir_sparse_set_add(&data->totally_useful, i);
_push_predecessors(ctx, bb, data);
}
}
}
IR_ASSERT(!ir_sparse_set_in(&data->totally_useful, b));
#ifdef IR_DEBUG
if (ctx->flags & IR_DEBUG_GCM_SPLIT) {
bool first = 1;
IR_SPARSE_SET_FOREACH(&data->totally_useful, i) {
if (first) {
fprintf(stderr, "\td_%d is TOTALLY_USEFUL in [BB%d", ref, i);
first = 0;
} else {
fprintf(stderr, ", BB%d", i);
}
} IR_SPARSE_SET_FOREACH_END();
fprintf(stderr, "]\n");
}
#endif
/* 2. Split the USEs into partitions */
use_list = &ctx->use_lists[ref];
ir_hashtab hash;
uint32_t j, clone, clones_count = 0, uses_count = 0;
struct {
ir_ref ref;
uint32_t block;
uint32_t use_count;
uint32_t use;
} *clones = ir_mem_malloc(sizeof(*clones) * use_list->count);
struct {
ir_ref ref;
uint32_t block;
uint32_t next;
} *uses = ir_mem_malloc(sizeof(*uses) * use_list->count);
ir_hashtab_init(&hash, use_list->count);
n = use_list->count;
for (p = &ctx->use_edges[use_list->refs]; n > 0; p++, n--) {
use = *p;
insn = &ctx->ir_base[use];
if (insn->op == IR_PHI) {
ir_ref *p = insn->ops + 2; /* PHI data inputs */
ir_ref *q = ctx->ir_base[insn->op1].ops + 1; /* MERGE inputs */
ir_ref n = insn->inputs_count - 1;
/* PHIs must be processed once */
if (ir_hashtab_find(&hash, -use) != (ir_ref)IR_INVALID_VAL) {
continue;
}
ir_hashtab_add(&hash, -use, IR_NULL);
for (;n > 0; p++, q++, n--) {
if (*p == ref) {
j = i = ctx->cfg_map[*q];
while (ir_sparse_set_in(&data->totally_useful, ctx->cfg_blocks[j].idom)) {
j = ctx->cfg_blocks[j].idom;
}
clone = ir_hashtab_find(&hash, j);
if (clone == IR_INVALID_VAL) {
clone = clones_count++;
ir_hashtab_add(&hash, j, clone);
clones[clone].block = j;
clones[clone].use_count = 0;
clones[clone].use = (uint32_t)-1;
}
uses[uses_count].ref = use;
uses[uses_count].block = i;
uses[uses_count].next = clones[clone].use;
clones[clone].use_count++;
clones[clone].use = uses_count++;
}
}
} else {
j = i = ctx->cfg_map[use];
if (i) {
IR_ASSERT(i > 0);
while (ir_sparse_set_in(&data->totally_useful, ctx->cfg_blocks[j].idom)) {
j = ctx->cfg_blocks[j].idom;
}
}
clone = ir_hashtab_find(&hash, j);
if (clone == IR_INVALID_VAL) {
clone = clones_count++;
ir_hashtab_add(&hash, j, clone);
clones[clone].block = j;
clones[clone].use_count = 0;
clones[clone].use = -1;
}
uses[uses_count].ref = use;
uses[uses_count].block = i;
uses[uses_count].next = clones[clone].use;
clones[clone].use_count++;
clones[clone].use = uses_count++;
}
}
#ifdef IR_DEBUG
if (ctx->flags & IR_DEBUG_GCM_SPLIT) {
for (i = 0; i < clones_count; i++) {
uint32_t u = clones[i].use;
fprintf(stderr, "\tCLONE #%d in BB%d USES(%d)=[d_%d/BB%d",
i, clones[i].block, clones[i].use_count, uses[u].ref, uses[u].block);
u = uses[u].next;
while (u != (uint32_t)-1) {
fprintf(stderr, ", d_%d/BB%d", uses[u].ref, uses[u].block);
u = uses[u].next;
}
fprintf(stderr, "]\n");
}
}
#endif
/* Create Clones */
insn = &ctx->ir_base[ref];
clones[0].ref = ref;
for (i = 1; i < clones_count; i++) {
clones[i].ref = clone = ir_emit(ctx, insn->optx, insn->op1, insn->op2, insn->op3);
insn = &ctx->ir_base[ref];
if (insn->op1 > 0) ir_use_list_add(ctx, insn->op1, clone);
if (insn->op2 > 0) ir_use_list_add(ctx, insn->op2, clone);
if (insn->op3 > 0) ir_use_list_add(ctx, insn->op3, clone);
}
/* Reconstruct IR: Update DEF->USE lists, CFG mapping and etc */
ctx->use_lists = ir_mem_realloc(ctx->use_lists, ctx->insns_count * sizeof(ir_use_list));
ctx->cfg_map = ir_mem_realloc(ctx->cfg_map, ctx->insns_count * sizeof(uint32_t));
n = ctx->use_lists[ref].refs;
for (i = 0; i < clones_count; i++) {
clone = clones[i].ref;
if (clones[i].use_count == 1) {
/* TOTALLY_USEFUL block may be a head of a diamond above the real usage.
* Sink it down to the real usage block.
* Clones with few uses we be sunk into the LCA block.
*/
clones[i].block = uses[clones[i].use].block;
}
ctx->cfg_map[clone] = clones[i].block;
ctx->use_lists[clone].count = clones[i].use_count;
ctx->use_lists[clone].refs = n;
uint32_t u = clones[i].use;
while (u != (uint32_t)-1) {
use = uses[u].ref;
ctx->use_edges[n++] = use;
u = uses[u].next;
if (i > 0) {
/* replace inputs */
ir_insn *insn = &ctx->ir_base[use];
ir_ref k, l = insn->inputs_count;
if (insn->op == IR_PHI) {
for (k = 1; k <= l; k++) {
if (ir_insn_op(insn, k) == ref) {
j = ctx->cfg_map[ir_insn_op(&ctx->ir_base[insn->op1], k - 1)];
if (j != clones[i].block) {
uint32_t dom_depth = ctx->cfg_blocks[clones[i].block].dom_depth;
while (ctx->cfg_blocks[j].dom_depth > dom_depth) {
j = ctx->cfg_blocks[j].dom_parent;
}
if (j != clones[i].block) {
continue;
}
}
ir_insn_set_op(insn, k, clone);
break;
}
}
} else {
for (k = 1; k <= l; k++) {
if (ir_insn_op(insn, k) == ref) {
ir_insn_set_op(insn, k, clone);
break;
}
}
}
}
}
}
ir_mem_free(uses);
ir_mem_free(clones);
ir_hashtab_free(&hash);
#ifdef IR_DEBUG
if (ctx->flags & IR_DEBUG_GCM_SPLIT) {
ir_check(ctx);
}
#endif
return 1;
}
#endif
#ifdef IR_DEBUG
static bool ir_gcm_dominates(ir_ctx *ctx, uint32_t b1, uint32_t b2)
{
uint32_t b1_depth = ctx->cfg_blocks[b1].dom_depth;
const ir_block *bb2 = &ctx->cfg_blocks[b2];
while (bb2->dom_depth > b1_depth) {
b2 = bb2->dom_parent;
bb2 = &ctx->cfg_blocks[b2];
}
return b1 == b2;
}
#endif
static void ir_gcm_schedule_late(ir_ctx *ctx, ir_ref ref, uint32_t b)
{
ir_ref n, use;
uint32_t lca = 0;
IR_ASSERT(ctx->ir_base[ref].op != IR_PARAM && ctx->ir_base[ref].op != IR_VAR);
IR_ASSERT(ctx->ir_base[ref].op != IR_PHI && ctx->ir_base[ref].op != IR_PI);
IR_ASSERT(IR_GCM_IS_SCHEDULED_EARLY(b));
b = IR_GCM_EARLY_BLOCK(b);
ctx->cfg_map[ref] = b;
for (n = 0; n < ctx->use_lists[ref].count; n++) {
use = ctx->use_edges[ctx->use_lists[ref].refs + n];
b = ctx->cfg_map[use];
if (IR_GCM_IS_SCHEDULED_EARLY(b)) {
ir_gcm_schedule_late(ctx, use, b);
b = ctx->cfg_map[use];
IR_ASSERT(b != 0);
} else if (!b) {
continue;
} else if (ctx->ir_base[use].op == IR_PHI) {
ir_insn *insn = &ctx->ir_base[use];
ir_ref *p = insn->ops + 2; /* PHI data inputs */
ir_ref *q = ctx->ir_base[insn->op1].ops + 1; /* MERGE inputs */
ir_ref n = insn->inputs_count - 1;
for (;n > 0; p++, q++, n--) {
if (*p == ref) {
b = ctx->cfg_map[*q];
lca = !lca ? b : ir_gcm_find_lca(ctx, lca, b);
}
}
continue;
}
lca = !lca ? b : ir_gcm_find_lca(ctx, lca, b);
}
IR_ASSERT(lca != 0 && "No Common Ancestor");
IR_ASSERT(ir_gcm_dominates(ctx, ctx->cfg_map[ref], lca) && "Early placement doesn't dominate the late");
#if IR_GCM_SPLIT
if (ctx->use_lists[ref].count > 1
&& ir_split_partially_dead_node(ctx, ref, lca)) {
return;
}
#endif
if (lca != ctx->cfg_map[ref]) {
b = ir_gcm_select_best_block(ctx, ref, lca);
ctx->cfg_map[ref] = b;
/* OVERFLOW is a projection of ADD/SUB/MUL_OV and must be scheduled into the same block */
if (ctx->ir_base[ref].op >= IR_ADD_OV && ctx->ir_base[ref].op <= IR_MUL_OV) {
ir_use_list *use_list = &ctx->use_lists[ref];
ir_ref n, *p, use;
for (n = use_list->count, p = &ctx->use_edges[use_list->refs]; n < 0; p++, n--) {
use = *p;
if (ctx->ir_base[use].op == IR_OVERFLOW) {
ctx->cfg_map[use] = b;
break;
}
}
}
}
}
int ir_gcm(ir_ctx *ctx)
{
ir_ref k, n, *p, ref;
ir_block *bb;
ir_list queue_early;
ir_list queue_late;
uint32_t *_blocks, b;
ir_insn *insn, *use_insn;
ir_use_list *use_list;
IR_ASSERT(ctx->cfg_map);
_blocks = ctx->cfg_map;
ir_list_init(&queue_early, ctx->insns_count);
if (ctx->cfg_blocks_count == 1) {
ref = ctx->cfg_blocks[1].end;
do {
insn = &ctx->ir_base[ref];
_blocks[ref] = 1; /* pin to block */
if (insn->inputs_count > 1) {
/* insn has input data edges */
ir_list_push_unchecked(&queue_early, ref);
}
ref = insn->op1; /* control predecessor */
} while (ref != 1); /* IR_START */
_blocks[1] = 1; /* pin to block */
use_list = &ctx->use_lists[1];
n = use_list->count;
for (p = &ctx->use_edges[use_list->refs]; n > 0; n--, p++) {
ref = *p;
use_insn = &ctx->ir_base[ref];
if (use_insn->op == IR_PARAM || use_insn->op == IR_VAR) {
ctx->cfg_blocks[1].flags |= (use_insn->op == IR_PARAM) ? IR_BB_HAS_PARAM : IR_BB_HAS_VAR;
_blocks[ref] = 1; /* pin to block */
}
}
/* Place all live nodes to the first block */
while (ir_list_len(&queue_early)) {
ref = ir_list_pop(&queue_early);
insn = &ctx->ir_base[ref];
n = insn->inputs_count;
for (p = insn->ops + 1; n > 0; p++, n--) {
ref = *p;
if (ref > 0 && _blocks[ref] == 0) {
_blocks[ref] = 1;
ir_list_push_unchecked(&queue_early, ref);
}
}
}
ir_list_free(&queue_early);
return 1;
}
ir_list_init(&queue_late, ctx->insns_count);
/* pin and collect control and control depended (PARAM, VAR, PHI, PI) instructions */
b = ctx->cfg_blocks_count;
for (bb = ctx->cfg_blocks + b; b > 0; bb--, b--) {
IR_ASSERT(!(bb->flags & IR_BB_UNREACHABLE));
ref = bb->end;
/* process the last instruction of the block */
insn = &ctx->ir_base[ref];
_blocks[ref] = b; /* pin to block */
if (insn->inputs_count > 1) {
/* insn has input data edges */
ir_list_push_unchecked(&queue_early, ref);
}
ref = insn->op1; /* control predecessor */
while (ref != bb->start) {
insn = &ctx->ir_base[ref];
_blocks[ref] = b; /* pin to block */
if (insn->inputs_count > 1) {
/* insn has input data edges */
ir_list_push_unchecked(&queue_early, ref);
}
if (insn->type != IR_VOID) {
IR_ASSERT(ir_op_flags[insn->op] & IR_OP_FLAG_MEM);
}
ref = insn->op1; /* control predecessor */
}
/* process the first instruction of the block */
_blocks[ref] = b; /* pin to block */
use_list = &ctx->use_lists[ref];
n = use_list->count;
if (n > 1) {
for (p = &ctx->use_edges[use_list->refs]; n > 0; n--, p++) {
ref = *p;
use_insn = &ctx->ir_base[ref];
if (use_insn->op == IR_PHI || use_insn->op == IR_PI) {
bb->flags |= (use_insn->op == IR_PHI) ? IR_BB_HAS_PHI : IR_BB_HAS_PI;
if (EXPECTED(ctx->use_lists[ref].count != 0)) {
_blocks[ref] = b; /* pin to block */
ir_list_push_unchecked(&queue_early, ref);
}
} else if (use_insn->op == IR_PARAM) {
bb->flags |= IR_BB_HAS_PARAM;
_blocks[ref] = b; /* pin to block */
} else if (use_insn->op == IR_VAR) {
bb->flags |= IR_BB_HAS_VAR;
_blocks[ref] = b; /* pin to block */
}
}
}
}
n = ir_list_len(&queue_early);
while (n > 0) {
n--;
ref = ir_list_at(&queue_early, n);
insn = &ctx->ir_base[ref];
k = insn->inputs_count - 1;
for (p = insn->ops + 2; k > 0; p++, k--) {
ref = *p;
if (ref > 0 && _blocks[ref] == 0) {
ir_gcm_schedule_early(ctx, ref, &queue_late);
}
}
}
#ifdef IR_DEBUG
if (ctx->flags & IR_DEBUG_GCM) {
fprintf(stderr, "GCM Schedule Early\n");
for (n = 1; n < ctx->insns_count; n++) {
fprintf(stderr, "%d -> %d\n", n, ctx->cfg_map[n]);
}
}
#endif
#if IR_GCM_SPLIT
ir_gcm_split_data data;
ir_sparse_set_init(&data.totally_useful, ctx->cfg_blocks_count + 1);
ir_list_init(&data.worklist, ctx->cfg_blocks_count + 1);
ctx->data = &data;
#endif
n = ir_list_len(&queue_late);
while (n > 0) {
n--;
ref = ir_list_at(&queue_late, n);
b = ctx->cfg_map[ref];
if (IR_GCM_IS_SCHEDULED_EARLY(b)) {
ir_gcm_schedule_late(ctx, ref, b);
}
}
#if IR_GCM_SPLIT
ir_list_free(&data.worklist);
ir_sparse_set_free(&data.totally_useful);
ctx->data = NULL;
#endif
ir_list_free(&queue_early);
ir_list_free(&queue_late);
#ifdef IR_DEBUG
if (ctx->flags & IR_DEBUG_GCM) {
fprintf(stderr, "GCM Schedule Late\n");
for (n = 1; n < ctx->insns_count; n++) {
fprintf(stderr, "%d -> %d\n", n, ctx->cfg_map[n]);
}
}
#endif
return 1;
}
static void ir_xlat_binding(ir_ctx *ctx, ir_ref *_xlat)
{
uint32_t n1, n2, pos;
ir_ref key;
ir_hashtab_bucket *b1, *b2;
ir_hashtab *binding = ctx->binding;
uint32_t hash_size = (uint32_t)(-(int32_t)binding->mask);
memset((char*)binding->data - (hash_size * sizeof(uint32_t)), -1, hash_size * sizeof(uint32_t));
n1 = binding->count;
n2 = 0;
pos = 0;
b1 = binding->data;
b2 = binding->data;
while (n1 > 0) {
key = b1->key;
IR_ASSERT(key < ctx->insns_count);
if (_xlat[key]) {
key = _xlat[key];
b2->key = key;
if (b1->val > 0) {
IR_ASSERT(_xlat[b1->val]);
b2->val = _xlat[b1->val];
} else {
b2->val = b1->val;
}
key |= binding->mask;
b2->next = ((uint32_t*)binding->data)[key];
((uint32_t*)binding->data)[key] = pos;
pos += sizeof(ir_hashtab_bucket);
b2++;
n2++;
}
b1++;
n1--;
}
binding->count = n2;
}
IR_ALWAYS_INLINE ir_ref ir_count_constant(ir_ref *_xlat, ir_ref ref)
{
if (!_xlat[ref]) {
_xlat[ref] = ref; /* this is only a "used constant" marker */
return 1;
}
return 0;
}
int ir_schedule(ir_ctx *ctx)
{
ir_ctx new_ctx;
ir_ref i, j, k, n, *p, *q, ref, new_ref, prev_ref, insns_count, consts_count, use_edges_count;
ir_ref *_xlat;
ir_ref *edges;
ir_ref prev_b_end;
uint32_t b, prev_b;
uint32_t *_blocks = ctx->cfg_map;
ir_ref *_next = ir_mem_malloc(ctx->insns_count * sizeof(ir_ref));
ir_ref *_prev = ir_mem_malloc(ctx->insns_count * sizeof(ir_ref));
ir_ref _move_down = 0;
ir_block *bb;
ir_insn *insn, *new_insn;
ir_use_list *lists, *use_list, *new_list;
/* Create a double-linked list of nodes ordered by BB, respecting BB->start and BB->end */
IR_ASSERT(_blocks[1] == 1);
prev_b = 1;
prev_b_end = ctx->cfg_blocks[1].end;
_prev[1] = 0;
_prev[prev_b_end] = 0;
for (i = 2, j = 1; i < ctx->insns_count; i++) {
b = _blocks[i];
IR_ASSERT((int32_t)b >= 0);
if (b == prev_b && i <= prev_b_end) {
/* add to the end of the list */
_next[j] = i;
_prev[i] = j;
j = i;
} else if (b > prev_b) {
bb = &ctx->cfg_blocks[b];
if (i == bb->start) {
IR_ASSERT(bb->end > bb->start);
prev_b = b;
prev_b_end = bb->end;
_prev[bb->end] = 0;
/* add to the end of the list */
_next[j] = i;
_prev[i] = j;
j = i;
} else {
IR_ASSERT(i != bb->end);
/* move down late (see the following loop) */
_next[i] = _move_down;
_move_down = i;
}
} else if (b) {
bb = &ctx->cfg_blocks[b];
IR_ASSERT(i != bb->start);
if (_prev[bb->end]) {
/* move up, insert before the end of the already scheduled BB */
k = bb->end;
} else {
/* move up, insert at the end of the block */
k = ctx->cfg_blocks[b + 1].start;
}
/* insert before "k" */
_prev[i] = _prev[k];
_next[i] = k;
_next[_prev[k]] = i;
_prev[k] = i;
}
}
_next[j] = 0;
while (_move_down) {
i = _move_down;
_move_down = _next[i];
b = _blocks[i];
bb = &ctx->cfg_blocks[b];
k = _next[bb->start];
if (bb->flags & (IR_BB_HAS_PHI|IR_BB_HAS_PI|IR_BB_HAS_PARAM|IR_BB_HAS_VAR)) {
/* insert after the start of the block and all PARAM, VAR, PI, PHI */
insn = &ctx->ir_base[k];
while (insn->op == IR_PHI || insn->op == IR_PARAM || insn->op == IR_VAR || insn->op == IR_PI) {
k = _next[k];
insn = &ctx->ir_base[k];
}
}
/* insert before "k" */
_prev[i] = _prev[k];
_next[i] = k;
_next[_prev[k]] = i;
_prev[k] = i;
}
#ifdef IR_DEBUG
if (ctx->flags & IR_DEBUG_SCHEDULE) {
fprintf(stderr, "Before Schedule\n");
for (i = 1; i != 0; i = _next[i]) {
fprintf(stderr, "%d -> %d\n", i, _blocks[i]);
}
}
#endif
_xlat = ir_mem_calloc((ctx->consts_count + ctx->insns_count), sizeof(ir_ref));
_xlat += ctx->consts_count;
_xlat[IR_TRUE] = IR_TRUE;
_xlat[IR_FALSE] = IR_FALSE;
_xlat[IR_NULL] = IR_NULL;
_xlat[IR_UNUSED] = IR_UNUSED;
insns_count = 1;
consts_count = -(IR_TRUE - 1);
/* Topological sort according dependencies inside each basic block */
for (b = 1, bb = ctx->cfg_blocks + 1; b <= ctx->cfg_blocks_count; b++, bb++) {
ir_ref start;
IR_ASSERT(!(bb->flags & IR_BB_UNREACHABLE));
/* Schedule BB start */
start = i = bb->start;
_xlat[i] = bb->start = insns_count;
insn = &ctx->ir_base[i];
if (insn->op == IR_CASE_VAL) {
IR_ASSERT(insn->op2 < IR_TRUE);
consts_count += ir_count_constant(_xlat, insn->op2);
}
n = insn->inputs_count;
insns_count += ir_insn_inputs_to_len(n);
i = _next[i];
insn = &ctx->ir_base[i];
if (bb->flags & (IR_BB_HAS_PHI|IR_BB_HAS_PI|IR_BB_HAS_PARAM|IR_BB_HAS_VAR)) {
int count = 0;
/* Schedule PARAM, VAR, PI */
while (insn->op == IR_PARAM || insn->op == IR_VAR || insn->op == IR_PI) {
_xlat[i] = insns_count;
insns_count += 1;
i = _next[i];
insn = &ctx->ir_base[i];
count++;
}
/* Schedule PHIs */
while (insn->op == IR_PHI) {
ir_ref j, *p, input;
_xlat[i] = insns_count;
/* Reuse "n" from MERGE and skip first input */
insns_count += ir_insn_inputs_to_len(n + 1);
for (j = n, p = insn->ops + 2; j > 0; p++, j--) {
input = *p;
if (input < IR_TRUE) {
consts_count += ir_count_constant(_xlat, input);
}
}
i = _next[i];
insn = &ctx->ir_base[i];
count++;
}
/* Schedule remaining PHIs */
if (UNEXPECTED(count < ctx->use_lists[start].count - 1)) {
ir_use_list *use_list = &ctx->use_lists[start];
ir_ref *p, count = use_list->count;
ir_ref phis = _prev[i];
for (p = &ctx->use_edges[use_list->refs]; count > 0; p++, count--) {
ir_ref use = *p;
ir_insn *use_insn = &ctx->ir_base[use];
if (!_xlat[use] && (_blocks[use] || use_insn->op == IR_PARAM)) {
IR_ASSERT(_blocks[use] == b || use_insn->op == IR_PARAM);
if (use_insn->op == IR_PARAM
|| use_insn->op == IR_VAR
|| use_insn->op == IR_PI
|| use_insn->op == IR_PHI) {
if (_prev[use] != phis) {
/* remove "use" */
_prev[_next[use]] = _prev[use];
_next[_prev[use]] = _next[use];
/* insert "use" after "phis" */
_prev[use] = phis;
_next[use] = _next[phis];
_prev[_next[phis]] = use;
_next[phis] = use;
}
phis = use;
_xlat[use] = insns_count;
if (use_insn->op == IR_PHI) {
ir_ref *q;
/* Reuse "n" from MERGE and skip first input */
insns_count += ir_insn_inputs_to_len(n + 1);
for (j = n, q = use_insn->ops + 2; j > 0; q++, j--) {
ir_ref input = *q;
if (input < IR_TRUE) {
consts_count += ir_count_constant(_xlat, input);
}
}
} else {
insns_count += 1;
}
}
}
}
i = _next[phis];
insn = &ctx->ir_base[i];
}
}
if (bb->successors_count > 1) {
ir_ref input, j = bb->end;
ir_insn *end = &ctx->ir_base[j];
if (end->op == IR_IF) {
/* Move condition closer to IF */
input = end->op2;
if (input > 0 && _blocks[input] == b && !_xlat[input] && _prev[j] != input) {
if (input == i) {
i = _next[i];
insn = &ctx->ir_base[i];
}
/* remove "input" */
_prev[_next[input]] = _prev[input];
_next[_prev[input]] = _next[input];
/* insert before "j" */