Flexbox & CSS-style Layout in Swift.
Core Layout is a simple system to compute layout trees. It wraps the wonderful work done in facebook/yoga in a richly typed, Swift framework.
While no assumptions are made about how the computed layouts will be used, Core Layout does provide a way to apply them to a tree of UIView
s, since that's likely the most common use case.
Create and configure Layout
s.
Create and configure other Layout
s. Add them as children. Repeat.
compute
the tree of Layout
s inside a given container CGSize
.
Use the CGRect
s from the resulting tree of ComputedLayout
s for something interesting.
The main type in Core Layout is Layout
. We'll create and nest these types to make a tree of layouts that can be computed.
Here's a simple example:
let layout = Layout(
container: ContainerBehavior(primaryAxis: .vertical),
padding: Edges(all: 8)
)
Now, we can compute
this layout, contained within a size:
let computed = layout.compute(with: CGSize(width: 160, height: 284))
// computed is:
// ComputedLayout(
// frame: CGRect(x: 0, y: 0, width: 160, height: 284),
// )
Nice. Nothing too fancy yet, let's add a second layout to the mix:
let layout = Layout(
container: ContainerBehavior(primaryAxis: .vertical),
padding: Edges(all: 8),
children: [
Layout(size: SizeBehavior(minHeight: 44))
]
)
We've added one child layout, with a minimum height of 44 points. Now, lets compute
it again:
let computed = layout.compute(with: CGSize(width: 160, height: 284))
// computed is now:
// let computed = ComputedLayout(
// frame: CGRect(x: 0, y: 0, width: 160, height: 284),
// children: [
// ComputedLayout(frame: CGRect(x: 8, y: 8, width: 144, height: 44))
// ]
// )
Neat! That's the basic idea.
Most of this is just plain Flexbox (at least conceptually).
Any Layout
can become a container for other Layout
s by setting its container
property to a new ContainerBehavior
value.
Then, when children are added to the Layout
, they'll be arranged according to the settings inside the container
property.
By default, Layout
s have a nil
container
property.
Let's take a look at the many properties of a CotnainerBehavior
, and how each affects the arrangement of a Layout
's children
.
Defines the primary axis. This defines which axis any children will be placed along.
We can choose .vertical
: (the default value)
Layout(
container: ContainerBehavior(primaryAxis: .vertical),
padding: Edges(all: 8),
children: [
Layout(margin: Edges(bottom: 8), size: .absolute(width: 44, height: 44)),
Layout(margin: Edges(bottom: 8), size: .absolute(width: 44, height: 44)),
Layout(margin: Edges(bottom: 8), size: .absolute(width: 44, height: 44))
]
)
Or .horizontal
:
Layout(
container: ContainerBehavior(primaryAxis: .horizontal),
padding: Edges(all: 8),
children: [
Layout(margin: Edges(bottom: 8), size: .absolute(width: 44, height: 44)),
Layout(margin: Edges(bottom: 8), size: .absolute(width: 44, height: 44)),
Layout(margin: Edges(bottom: 8), size: .absolute(width: 44, height: 44))
]
)
The primaryAxisDistribution
property describes how children should be distributed along the primary axis.
First let's initialize an array of child Layout
s (so we don't have to repeat them in each example):
let children = [
Layout(margin: Edges(trailing: 8), size: .absolute(width: 44, height: 44)),
Layout(margin: Edges(trailing: 8), size: .absolute(width: 44, height: 44)),
Layout(size: .absolute(width: 44, height: 44)),
]
Great. Now we can try out each of the primaryAxisDistribution
options:
.leading
: (the default value)
Layout(
container: ContainerBehavior(primaryAxis: .horizontal, primaryAxisDistribution: .leading),
padding: Edges(all: 8),
children: children
)
.center
:
Layout(
container: ContainerBehavior(primaryAxis: .horizontal, primaryAxisDistribution: .center),
padding: Edges(all: 8),
children: children
)
.trailing
:
Layout(
container: ContainerBehavior(primaryAxis: .horizontal, primaryAxisDistribution: .trailing),
padding: Edges(all: 8),
children: children
)
.spaceAround
:
Layout(
container: ContainerBehavior(primaryAxis: .horizontal, primaryAxisDistribution: .spaceAround),
padding: Edges(all: 8),
children: children
)
.spaceBetween
:
Layout(
container: ContainerBehavior(primaryAxis: .horizontal, primaryAxisDistribution: .spaceBetween),
padding: Edges(all: 8),
children: children
)
The secondaryAxisDistribution
property describes how children should be placed along the seconday axis. (i.e. the opposite of the primary axis).
If primaryAxis
is set to .horizontal
, then the secondary axis is vertical.
Again, we'll set up some children up front, then try out each option:
let size = SizeBehavior(minWidth: 44, minHeight: 44)
let children = [
Layout(margin: Edges(trailing: 8), size: minSize),
Layout(margin: Edges(trailing: 8), size: minSize),
Layout(size: minSize),
]
.leading
:
Layout(
container: ContainerBehavior(primaryAxis: .horizontal, secondaryAxisDistribution: .leading),
padding: Edges(all: 8),
children: children
)
.center
:
Layout(
container: ContainerBehavior(primaryAxis: .horizontal, secondaryAxisDistribution: .center),
padding: Edges(all: 8),
children: children
)
.trailing
:
Layout(
container: ContainerBehavior(primaryAxis: .horizontal, secondaryAxisDistribution: .trailing),
padding: Edges(all: 8),
children: children
)
.stretch
: (the default value)
Layout(
container: ContainerBehavior(primaryAxis: .horizontal, secondaryAxisDistribution: .stretch),
padding: Edges(all: 8),
children: children
)
This property is only needed when using shouldWrap: true
, and there are enough children to wrap onto multiple "lines".
Setting secondaryAxisDistributionWhenWrapping
does nothing if there's only a single "line" of children.
Again, we'll set up some children up front, then try out each option:
let size = .absolute(width: 40, height: 40)
let margin = Edges(bottom: 8, trailing: 8)
let children = [
Layout(margin: margin, size: size),
Layout(margin: margin, size: size),
Layout(margin: margin, size: size),
Layout(margin: margin, size: size),
Layout(size: size)
]
.leading
:
Layout(
container: ContainerBehavior(
primaryAxis: .horizontal,
secondaryAxisDistributionWhenWrapping: .leading,
shouldWrap: true
),
padding: Edges(top: 8, leading: 8),
children: children
)
.center
:
Layout(
container: ContainerBehavior(
primaryAxis: .horizontal,
secondaryAxisDistributionWhenWrapping: .center,
shouldWrap: true
),
padding: Edges(top: 8, leading: 8),
children: children
)
.trailing
:
Layout(
container: ContainerBehavior(
primaryAxis: .horizontal,
secondaryAxisDistributionWhenWrapping: .trailing,
shouldWrap: true
),
padding: Edges(top: 8, leading: 8),
children: children
)
.stretch
:
Layout(
container: ContainerBehavior(
primaryAxis: .horizontal,
secondaryAxisDistributionWhenWrapping: .leading,
shouldWrap: true
),
padding: Edges(top: 8, leading: 8),
children: children
)
.spaceAround
:
Layout(
container: ContainerBehavior(
primaryAxis: .horizontal,
secondaryAxisDistributionWhenWrapping: .leading,
shouldWrap: true
),
padding: Edges(top: 8, leading: 8),
children: children
)
.spaceBetween
:
Layout(
container: ContainerBehavior(
primaryAxis: .horizontal,
secondaryAxisDistributionWhenWrapping: .leading,
shouldWrap: true
),
padding: Edges(top: 8, leading: 8),
children: children
)
When the shouldWrap
property is false
(the default value), children won't wrap to a new row or column. Instead, they'll try to fit themselves into a single "line".
In this next example, because the children have an AbsoluteSizeBehavior
for .size
, and they're not allowed to wrap, they end up trailing off the edge:
Layout(
container: ContainerBehavior(primaryAxis: .horizontal, shouldWrap: false),
padding: Edges(top: 8, leading: 8),
children: [
Layout(margin: Edges(bottom: 8), size: .absolute(width: 44, height: 44)),
Layout(margin: Edges(bottom: 8), size: .absolute(width: 44, height: 44)),
Layout(margin: Edges(bottom: 8), size: .absolute(width: 44, height: 44)),
Layout(margin: Edges(bottom: 8), size: .absolute(width: 44, height: 44)),
Layout(margin: Edges(bottom: 8), size: .absolute(width: 44, height: 44))
]
)
When the wrap
property is true
however, children will be allowed to naturally flow onto the next row or column (depending on the primaryAxis
of the Layout
).
Layout(
container: ContainerBehavior(primaryAxis: .horizontal, shouldWrap: true),
padding: Edges(top: 8, leading: 8),
children: [
Layout(margin: Edges(bottom: 8), size: .absolute(width: 44, height: 44)),
Layout(margin: Edges(bottom: 8), size: .absolute(width: 44, height: 44)),
Layout(margin: Edges(bottom: 8), size: .absolute(width: 44, height: 44)),
Layout(margin: Edges(bottom: 8), size: .absolute(width: 44, height: 44)),
Layout(margin: Edges(bottom: 8), size: .absolute(width: 44, height: 44))
]
)
The overriddenSecondaryAxisDistribution
property is nil
by default. (Meaning no override takes place). When set to a non-nil
value, this allows a single child to override its parent container's instructions for how to arrange itself along the secondary axis.
Put another way: The value of this property on a child Layout
, will supercede the value its parent Layout
has set for its container?.secondaryAxisDistribution
property when computing the tree of Layout
s.
Let's take a look at what kind of behavior we can achieve with the overriddenSecondaryAxisDistribution
property:
nil
(The default value):
let size = SizeBehavior(minWidth: 44, minHeight: 44)
Layout(
container: ContainerBehavior(primaryAxis: .horizontal, secondaryAxisDistribution: .leading),
padding: Edges(all: 8),
children: [
Layout(size: size, margin: Edges(trailing: 8)),
Layout(size: size, margin: Edges(trailing: 8)),
Layout(size: size)
]
)
.leading
:
let size = SizeBehavior(minWidth: 44, minHeight: 44)
Layout(
container: ContainerBehavior(primaryAxis: .horizontal, secondaryAxisDistribution: .leading),
padding: Edges(all: 8),
children: [
Layout(size: size, margin: Edges(trailing: 8)),
Layout(size: size, margin: Edges(trailing: 8)),
Layout(overriddenSecondaryAxisDistribution: .leading, size: size))
]
)
.center
:
let size = SizeBehavior(minWidth: 44, minHeight: 44)
Layout(
container: ContainerBehavior(primaryAxis: .horizontal, secondaryAxisDistribution: .leading),
padding: Edges(all: 8),
children: [
Layout(size: size, margin: Edges(trailing: 8)),
Layout(size: size, margin: Edges(trailing: 8)),
Layout(overriddenSecondaryAxisDistribution: .center, size: size))
]
)
.trailing
:
let size = SizeBehavior(minWidth: 44, minHeight: 44)
Layout(
container: ContainerBehavior(primaryAxis: .horizontal, secondaryAxisDistribution: .leading),
padding: Edges(all: 8),
children: [
Layout(size: size, margin: Edges(trailing: 8)),
Layout(size: size, margin: Edges(trailing: 8)),
Layout(overriddenSecondaryAxisDistribution: .trailing, size: size)
]
)
.stretch
:
let size = SizeBehavior(minWidth: 44, minHeight: 44)
Layout(
container: ContainerBehavior(primaryAxis: .horizontal, secondaryAxisDistribution: .leading),
padding: Edges(all: 8),
children: [
Layout(size: size, margin: Edges(trailing: 8)),
Layout(size: size, margin: Edges(trailing: 8)),
Layout(overriddenSecondaryAxisDistribution: .trailing, size: size)
]
)
In many cases, we'll let the container define how a child Layout
is arranged. Sometimes though, we'd like to specify an exact value for the position of a Layout
. We can do this through the Layout
's overriddenPosition
property.
We can set values relative to the Layout
's container:
Layout(
container: ContainerBehavior(primaryAxis: .vertical),
padding: Edges(leading: 50),
children: [
Layout(
container: ContainerBehavior(primaryAxis: .horizontal),
size: .absolute(width: 100, height: 60),
children: [
Layout(
overriddenPosition: Edges(top: 8, leading: 8),
size: .absolute(width: 44, height: 44)
)
]
)
]
)
Note how we've included a container Layout
inside another container Layout
, then included a third Layout
inside that. The third layout (shown here with a number 3
on it), is positioned relative to its parent container Layout
, using the values we've specified in its overriddenPosition
property.
Every Layout
has a value for its .size
. These are SizeBehavior
s and they have a few different modes. The default mode
is .flexibleShrinksButDoesntGrow
.
Let's take a look at each mode and how it behaves.
This is the default value. This mode says the Layout
(only if needed) will shrink down, but will not be stretched up to fill the available space along the primary axis. The Layout
will also respect the value for its size.minimum
property.
This mode says the Layout
can be shrunken down during computation, and will be stretched up to fill the available space along the primary axis. The Layout
will also respect the value for its size.minimum
, and size.maximum
properties.
The units
parameter is 1
by default. This means if multiple .flexible
Layout
s are arranged in a line, they will all stretch to fill the space evenly. We can alter this behavior by supplying units
value of some other positive integer. Doing so will adjust how the available space in the line is filled by the Layout
s.
For example, lets try out a few .flexible
sized Layout
s, using the default value (1
) for units
:
Layout(
container: ContainerBehavior(primaryAxis: .vertical, secondaryAxisDistribution: .stretch),
size: .flexible(),
padding: Edges(top: 8, leading: 8, trailing: 8),
children: [
Layout(size: .flexible(units: 1), margin: Edges(bottom: 8)),
Layout(size: .flexible(units: 1), margin: Edges(bottom: 8)),
Layout(size: .flexible(units: 1), margin: Edges(bottom: 8))
]
)
Now, let's try the same example, but pass in different values for the flexible units of the child Layout
s:
Layout(
container: ContainerBehavior(primaryAxis: .vertical, secondaryAxisDistribution: .stretch),
size: .flexible(),
padding: Edges(top: 8, leading: 8, trailing: 8),
children: [
Layout(size: .flexible(units: 1), margin: Edges(bottom: 8)),
Layout(size: .flexible(units: 2), margin: Edges(bottom: 8)),
Layout(size: .flexible(units: 3), margin: Edges(bottom: 8))
]
)
Absolute sizing is pretty straightforward. You supply a width and/or height value, and those values are used explicitly for that dimension of the Layout
:
Layout(
container: ContainerBehavior(primaryAxis: .vertical),
children: [Layout(size: .absolute(width: 97, height: 58))]
)
Relative sizing is a bit more involved. Here we're passed in some options we can use to do our own computations based on the available space of our parent/container Layout
.
Essentially this means, we're handed the size of our parent, (i.e. the size we're going to be constrained to) and we're expected to return back an exact CGSize for our Layout
.
This is useful for basic relative sizing (i.e. my parent's width - X), however it's most useful in the case of arranging Layout
s containing variable sized content, such as text.
Let's look at an example of creating a Layout
tree where one of the Layout
's content needs to be "measured" before it can be obtained:
Layout(
container: ContainerBehavior(
primaryAxis: .vertical,
secondaryAxisDistribution: .leading
),
children: [
Layout(
identifier: "Core Layout",
size: .relative { (options) -> CGSize in
let string = NSAttributedString(string: "Core Layout", attributes: [
NSFontAttributeName : ComputedLayout.debugIdentifierFont
])
return string.boundingRect(
with: options.containerSize,
options: [.usesLineFragmentOrigin, .usesFontLeading],
context: nil
).size
},
margin: Edges(leading: 8)
)
]
)
We use the NSAttributedString
function boundRect(with:options:content:)
to calculate the size of a String
using a given font. We pass in the containerSize
property to constrain this measurement to the parent's (already computed) size.
All 3 of these properties work basically how they do in CSS. Let's take a quick look at them:
Adds space on the outside of Layout
. Pushes sibling Layout
s out of the way.
Layout(
container: ContainerBehavior(primaryAxis: .vertical),
children: [
Layout(identifier: "1", size: .absolute(width: 30, height: 30), margin: Edges(bottom: 10)),
Layout(identifier: "2", size: .absolute(width: 30, height: 30), margin: Edges(bottom: 20)),
Layout(identifier: "3", size: .absolute(width: 30, height: 30), margin: Edges(leading: 20))
]
)
Adds space on the inside of a Layout
. Pushes contained Layout
s inward.
Layout(
container: ContainerBehavior(primaryAxis: .vertical),
padding: Edges(all: 20),
children: [
Layout(identifier: "1", size: .absolute(width: 30, height: 30)),
Layout(identifier: "2", size: .absolute(width: 30, height: 30)),
Layout(identifier: "3", size: .absolute(width: 30, height: 30))
]
)
Adds space on the inside of a Layout
, increasing its size.
Note: Core Layout doesn't handle any kind of rendering, just layout computation.
Layout(
container: ContainerBehavior(primaryAxis: .horizontal),
children: [
Layout(identifier: "1", size: .absolute(width: 30, height: 30), border: Edges(all: 20)),
Layout(identifier: "2", size: .absolute(width: 30, height: 30), border: Edges(all: 20)),
Layout(identifier: "3", size: .absolute(width: 30, height: 30), border: Edges(all: 20))
]
)
We can combine multiple Layout
s, nesting them inside one another, to achieve complex arrangements with ease.
Here's an example representing a row of content in an iOS app:
Layout(
container: ContainerBehavior(primaryAxis: .vertical, secondaryAxisDistribution: .stretch),
padding: Edges(all: 8),
children: [
Layout(
container: ContainerBehavior(
primaryAxis: .horizontal,
primaryAxisDistribution: .spaceBetween,
secondaryAxisDistribution: .center
),
padding: Edges(all: 8),
children: [
Layout(
container: ContainerBehavior(
primaryAxis: .horizontal,
secondaryAxisDistribution: .center
),
children: [
Layout(size: .absolute(width: 30, height: 30)),
Layout(
size: .relative(closure: { (options) -> CGSize in /* ...hidden for brevity... */ }),
margin: Edges(leading: 8)
)
]
),
Layout(size: .absolute(width: 8, height: 8))
]
)
]
)
We've seen how we can turn Layout
s into ComputedLayout
s, but... then what?
Core Layout intentionally tries not to assume anything about how ComputedLayout
s will be used, but does provide a very basic way to use ComputedLayout
s to arrange UIView
s:
let rootView = createViewTree()
let layoutTree = createLayoutTree()
let computedLayout = layoutTree.compute(with: view.bounds.size)
rootView.apply(layout: computedLayout)
This will set all the frame
properties of rootView
and its subviews
(and so on) to match those in the ComputedLayout
tree.
Note: This will throw if the two trees ever don't match up.
Care has been taken to include a couple of useful debugging tools. ComputedLayout
types have been extended to render an initializer of themselves when passed to print
. This allows us to easily copy/paste computed layouts into tests (for example).
let layout = Layout(
container: ContainerBehavior(primaryAxis: .vertical),
children: [
Layout(
overriddenPosition: .absolute(Edges(top: 8, leading: 8)),
size: .absolute(width: 44, height: 44)
)
]
)
let computed = layout.compute(with: CGSize(width: 160, height: 284))
print(computed)
// Prints:
//
// ComputedLayout(
// frame: CGRect(x: 0.0, y: 0.0, width: 160.0, height: 284.0),
// children: [
// ComputedLayout(frame: CGRect(x: 8.0, y: 8.0, width: 44.0, height: 44.0))
// ]
// )
Last but not least, ComputedLayout
implements the debugQuickLookObject()
function and renders a custom UIImage
representing the computed layout.
This is great (for example) when we're stopped at a break point:
Sharp-eyed readers have probably already guessed, but these quick look images are where the diagrams in this README came from. 😎
Core Layout works great with CostumeKit.
For example, we can expose "standard padding" in a Costume
:
open class MyAppCostume : Costume {
let spacing = CGFloat(8)
// standard padding is 2 spacing units in all directions
public func wearStandardPadding(_ layout: Layout) {
layout.padding = Edges(all: spacing * 2)
}
public var name: String { return "Default" }
public var description: String { return "The default costume." }
public init() { }
}
Cheers.
git clone https://github.com/jakemarsh/core-layout.git
cd core-layout
git submodule init && git submodule update --recursive
- Open Xcode, Build.
Installation (Carthage)
Add github "jakemarsh/core-layout"
to your Cartfile