-
Notifications
You must be signed in to change notification settings - Fork 0
/
2D_plot_results.py
executable file
·73 lines (62 loc) · 3.14 KB
/
2D_plot_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#!/usr/bin/env python3
import argparse as ap
import os
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
import matplotlib.colors as colors
def main():
# Setup command line arguements.
parser = ap.ArgumentParser(description='Plots the scalar flux generated by DOMA for 2D transport problems.')
parser.add_argument('-i', type=str, dest='file_name', required=True, help='The path of the input file (assuming the outputs are in the same directory).')
parser.add_argument('-l', '--log-scale', action='store_true', dest='log_scale', help='Whether the plot is log scale or not..')
parser.add_argument('-s', type=int, dest='step', required=False, default=-1, help='The timestep to plot. Negative timesteps indicate a steady state solve.')
cli_args = parser.parse_args()
dir_path = os.path.dirname(os.path.realpath(cli_args.file_name))
input_name = os.path.splitext(os.path.basename(cli_args.file_name))[0]
dim_file = open(dir_path + "/" + input_name + "_dims.txt", "r")
dim_x = int(str(dim_file.readline()).replace("num_x: ", "").replace("\n", ""))
dim_y = int(str(dim_file.readline()).replace("num_y: ", "").replace("\n", ""))
grps = int(str(dim_file.readline()).replace("num_g: ", "").replace("\n", ""))
x_vals = np.loadtxt(dir_path + "/" + input_name + "_meshx.txt")
y_vals = np.loadtxt(dir_path + "/" + input_name + "_meshy.txt")
x_2D = x_vals.reshape((dim_y, dim_x))
y_2D = y_vals.reshape((dim_y, dim_x))
for grp in range(grps):
raw_flux = np.array([1])
if cli_args.step >= 0:
raw_flux = np.loadtxt(dir_path + "/" + input_name + "_t" + str(cli_args.step) + "_g" + str(grp) + "_flux.txt")
else:
raw_flux = np.loadtxt(dir_path + "/" + input_name + "_g" + str(grp) + "_flux.txt")
flux_2D = raw_flux.reshape((dim_y, dim_x))
if cli_args.log_scale == True:
fig, ax = plt.subplots()
mappable = ax.pcolor(x_2D, y_2D, flux_2D,
norm=colors.LogNorm(vmin=raw_flux.min(), vmax=raw_flux.max()),
cmap=cm.coolwarm, shading='auto')
cbar = fig.colorbar(mappable)
cbar.ax.set_ylabel('Group ' + str(grp) + ' Scalar Flux (s$^{-1}$ cm$^{-1}$)')
ax.set_xlabel('x (cm)')
ax.set_ylabel('y (cm)')
if cli_args.step > 0:
plt.savefig(dir_path + "/" + input_name + "_t" + str(cli_args.step) + "_g" + str(grp) + "_flux.png", format='png')
else:
plt.savefig(dir_path + "/" + input_name + "_g" + str(grp) + "_flux.png", format='png')
plt.show()
plt.close()
else:
fig, ax = plt.subplots()
mappable = ax.pcolor(x_2D, y_2D, flux_2D,
cmap=cm.coolwarm, shading='auto')
cbar = fig.colorbar(mappable)
cbar.ax.set_ylabel('Group ' + str(grp) + ' Scalar Flux (s$^{-1}$ cm$^{-1}$)')
ax.set_xlabel('x (cm)')
ax.set_ylabel('y (cm)')
if cli_args.step > 0:
plt.savefig(dir_path + "/" + input_name + "_t" + str(cli_args.step) + "_g" + str(grp) + "_flux.png", format='png')
else:
plt.savefig(dir_path + "/" + input_name + "_g" + str(grp) + "_flux.png", format='png')
plt.show()
plt.close()
if __name__ == "__main__":
main()