-
Notifications
You must be signed in to change notification settings - Fork 0
/
poc2.py
106 lines (95 loc) · 3.86 KB
/
poc2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import json
import random
import os
import numpy as np
import scipy.io.wavfile
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.preprocessing import MinMaxScaler
from collectTrainData2 import collectTrainData
from getPotentialSpeakLocation import getPotentialSpeakLocation
from FeatureExtraction import Rasta,Mfcc,Raw
from MLAlgo import KNN, SVM, NeuralNetFeatures, NeuralNetRaw
def runPipeline(dir_train, dir_test, left, right, mlModel, featureExtraction, applyPca):
#1.collect the raw train data
print("Collect raw train data from %s..."%(dir_train))
X_train,y_train,rate = collectTrainData(dir_train, left, right)
#2. feature extraction
print("Apply feature extraction to the raw data...")
X_train = featureExtraction(X_train, rate)
pca = PCA(n_components = 0.95)
scaler = MinMaxScaler()
#******PCA (optional)
if applyPca:
print("Apply PCA to reduce the dimensionality of the data to 95%...")
# X_train = scaler.fit_transform(X_train)
pca.fit(X_train)
X_train = pca.transform(X_train)
#3. train the model
print("Train the model...")
mlModel.train(X_train, y_train)
#4. solve each test data
print("Solve each test input from %s:"%dir_test)
prefixes = list(set([x.split('.')[0] for x in os.listdir(DIR_TEST)])) #list all files names
prefixes = sorted(prefixes)
count = 0
count_34th = 0
indiv_count = 0
for i in range(len(prefixes)):
prefix = prefixes[i]
#4.1. Read the file
wavFile = os.path.join(DIR_TEST, prefix + ".wav")
outFile = os.path.join(DIR_TEST, prefix + ".txt")
#read/parse .wav file and .txt file
rate, data = scipy.io.wavfile.read(wavFile)
data = np.asarray([0] * LEFT + list(data) + [0] * RIGHT)
output = json.load(open(outFile))
#4.2. Get potential spoken locs
locs = getPotentialSpeakLocation(data, rate, LEFT, RIGHT, 4)
#Get the expectedLocs from the test file
expectedLocs = map(int, output["offsets"][1:-1].split(','))
expectedLocs = [(x + LEFT) for x in expectedLocs]
print("======Test %d:"%(i))
print("Actual spoken locs = " + str(locs))
print("Expected spoken locs = " + str(expectedLocs))
#4.3. Build the answer
captchas = ""
signals = []
#Iterate through each loc
for loc in locs:
sta = loc - LEFT
fin = loc + RIGHT
signals.append(data[sta:fin])
signals = np.array(signals)
#feature extraction
signals = featureExtraction(signals, rate)
#******PCA (optional)
if applyPca:
# signals = scaler.fit_transform(signals)
signals = pca.transform(signals)
#predict the output for each individual token
predictedVals = mlModel.predict(signals)
for c in predictedVals:
captchas += str(c) if c < 10 else chr(ord('a') + c - 10)
if captchas == output["code"]:
count += 1
cur_cnt = 0
for i in range(4):
if captchas[i] == output["code"][i]:
cur_cnt += 1
indiv_count += 1
if cur_cnt == 3:
count_34th += 1
print("Actual output = %s | Expected output = %s"%(captchas, output["code"]))
print("Accuracy = %.4f"%(count/len(prefixes)))
print("3/4th Accuracy = %.4f"%((count + count_34th)/len(prefixes)))
print("Accuracy of Individual Digits = %.4f"%((indiv_count)/(len(prefixes) * 4)))
#########CONFIGURATION FOR THE PIPELINE
if __name__ == '__main__':
DIR_TRAIN = os.path.join("data", "securimage_all", "train")
DIR_TEST = os.path.join("data", "securimage_all", "test")
LEFT = 2500
RIGHT = 2500
MLMODEL = SVM()
FEATURE_EXTRATION = Mfcc(flatten=True)
runPipeline(DIR_TRAIN, DIR_TEST, LEFT, RIGHT, MLMODEL, FEATURE_EXTRATION, applyPca=True)