This repository has been archived by the owner on Dec 15, 2023. It is now read-only.
generated from minerllabs/basalt_2022_competition_submission_template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_xirl.py
245 lines (210 loc) · 8.69 KB
/
train_xirl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from argparse import ArgumentParser
import logging
import os
from typing import List
import ray
import numpy as np
import gym
import minerl
import torch
from tqdm import tqdm
import coloredlogs
from fractal_zero.search.fmc import FMC
from fractal_zero.vectorized_environment import VectorizedDynamicsModelEnvironment
from vpt.agent import MineRLAgent
from fgz.architecture.dynamics_function import (
DynamicsFunction,
MineRLDynamicsEnvironment,
)
from fgz.data_utils.evaluator import Evaluator
from fgz.loading import get_agent
from fgz.training.fgz_trainer import FGZTrainer
from fgz.training.xirl_trainer import XIRLTrainer
from fgz.data_utils.data_handler import DataHandler
# from fgz_config import TASKS, FGZConfig
from xirl_config import XIRLConfig
try:
import wandb
except ImportError:
pass # optional
coloredlogs.install(logging.DEBUG)
# def get_dynamics_function(config: FGZConfig):
# # TODO: should we initialize the weights of the dynamics function with pretrained agent weights of some kind?
# return DynamicsFunction(
# state_embedding_size=2048, # TODO: make automatic
# discriminator_classes=config.num_discriminator_classes,
# embedder_layers=4,
# button_features=128,
# camera_features=128,
# )
#
#
# def get_dynamics_environment(config: FGZConfig, agent: MineRLAgent) -> MineRLDynamicsEnvironment:
# dynamics_function = get_dynamics_function(config)
#
# return MineRLDynamicsEnvironment(
# config.action_space, dynamics_function=dynamics_function, agent=agent, n=config.num_walkers, use_agent_policy=not config.fmc_random_policy
# )
#
#
# def get_data_handler(config: FGZConfig, agent):
# return DataHandler(
# config.dataset_paths, agent=agent, frames_per_window=config.unroll_steps
# )
#
#
# def run_training(
# trainer, lr_scheduler, train_steps: int, batch_size: int, checkpoint_every: int = 10, evaluate_save_video_every: int = 100, async_eval: bool = True,
# ):
#
# if async_eval:
# evaluator = Evaluator.remote()
#
# video_filepath = None
#
# best_score = 0.0
# best_path = None
# new_best = False
# last_path = None
#
# for train_step in tqdm(range(train_steps), desc="Training"):
# score = trainer.train_sub_trajectories(batch_size=batch_size, use_tqdm=False)
#
# if train_step % checkpoint_every == 0:
# last_path = trainer.save("./train/checkpoints")
#
# if lr_scheduler is not None:
# lr_scheduler.step()
#
# if score >= best_score:
# best_score = score
# best_path = trainer.save("./train/checkpoints/", f"./train/checkpoints/{trainer.run_name}_best.pth")
# new_best = True
#
# if (train_step) % evaluate_save_video_every == 0:
# print("Starting eval process...")
#
# if async_eval:
# if video_filepath is not None:
# video_filepath = ray.get(video_filepath)
# if trainer.config.use_wandb:
# wandb.log({"video": wandb.Video(video_filepath, fps=4, format="gif")})
#
# if new_best and best_path is not None:
# print("Evaluating the latest best path")
# path_to_checkpoint = best_path
# else:
# print("Evaluating the latest (not best) path")
# path_to_checkpoint = last_path
#
# video_filepath = evaluator.evaluate.remote(path_to_checkpoint)
# new_best = False
#
# else:
# task_id = trainer.config.enabled_tasks[0]
# eval_env_id = TASKS[task_id]["dataset_dir"]
# video_filepath = trainer.evaluate(eval_env_id, render=False, save_video=True, max_steps=128, force_no_escape=True)
# if trainer.config.use_wandb:
# wandb.log({"video": wandb.Video(video_filepath, fps=4, format="gif")})
def main(
use_wandb: bool,
force_cpu: bool,
fmc_logit: bool,
batch_size: int,
embed_batch_size: int,
unroll_steps: int,
train_steps: int,
tasks: List[int],
fmc_steps: int,
num_walkers: int,
fmc_random_policy: bool,
learning_rate: float,
consistency_loss_coeff: float,
save_video_every: int,
data_workers: int,
num_frames_per_pair: int,
num_frames_per_trajectory_to_load: int,
):
"""
This function will be called for training phase.
This should produce and save same files you upload during your submission.
All trained models should be placed under "train" directory!
"""
assert num_frames_per_pair <= num_frames_per_trajectory_to_load
# enabled_tasks = [2] # cave only
# enabled_tasks = [2, 3] # cave and waterfall
# enabled_tasks = [0, 1, 2, 3] # all
config = XIRLConfig(
model_filename="foundation-model-2x.model",
weights_filename="rl-from-early-game-2x.weights",
enabled_tasks=tasks,
disable_fmc_detection=not fmc_logit, # if true, only classification will occur.
use_wandb=use_wandb,
verbose=True,
unroll_steps=unroll_steps,
fmc_steps=fmc_steps,
num_walkers=num_walkers,
fmc_random_policy=fmc_random_policy,
learning_rate=learning_rate,
batch_size=batch_size,
consistency_loss_coeff=consistency_loss_coeff,
num_frames_per_pair=num_frames_per_pair,
num_frames_per_trajectory_to_load=num_frames_per_trajectory_to_load,
force_cpu=force_cpu,
data_workers=data_workers,
embed_batch_size=embed_batch_size,
)
print(f"Running with config: {config}")
if config.use_wandb:
wandb.init(project=f"xirl-task-{tasks[0]}", config=config.asdict())
# minerl_env = gym.make('MineRLBasaltMakeWaterfall-v0')
# agent = get_agent(config)
# dynamics_env = get_dynamics_environment(config, agent)
# data_handler = get_data_handler(config, agent)
# # setup optimizer and learning rate schedule
# dynamics_function_optimizer = torch.optim.Adam(
# dynamics_env.dynamics_function.parameters(),
# lr=config.learning_rate,
# # weight_decay=1e-4,
# )
# lr_scheduler = None
# # lr_scheduler = torch.optim.lr_scheduler.StepLR(dynamics_function_optimizer, step_size=10, gamma=0.95)
# # setup training/fmc objects
# fmc = FMC(dynamics_env, freeze_best=True)
# trainer = FGZTrainer(
# agent, fmc, data_handler, dynamics_function_optimizer, config=config
# )
# run_training(trainer, lr_scheduler, train_steps=train_steps, batch_size=config.batch_size, evaluate_save_video_every=save_video_every)
trainer = XIRLTrainer(config)
for i in tqdm(range(train_steps), desc="XIRL Training"):
trainer.train_on_pair()
# TODO: real checkpoints
if i % 10 == 0:
torch.save(trainer.model, f"train/xirl_model_{i}.pth")
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument(
"--use-wandb", action="store_true", help="Enables usage of weights and biases."
)
parser.add_argument(
"--force-cpu", action="store_true", help="Requires XIRL to use the CPU."
)
parser.add_argument("--num-frames-per-pair", type=int, default=128)
parser.add_argument("--num-frames-per-trajectory-to-load", type=int, default=128)
parser.add_argument("--data-workers", type=int, default=4)
parser.add_argument("--batch-size", type=int, default=32)
parser.add_argument("--embed-batch-size", type=int, default=64)
parser.add_argument("--consistency-loss-coeff", type=float, default=0.0)
parser.add_argument("--learning-rate", type=float, default=0.000001)
parser.add_argument("--unroll-steps", type=int, default=4)
parser.add_argument("--save-video-every", type=int, default=100)
parser.add_argument("--train-steps", type=int, default=3000)
parser.add_argument('--tasks', nargs="+", type=int, help="List of integers that correspond to the enabled tasks.", default=[2])
# FMC hyperparameters
parser.add_argument("--num-walkers", type=int, default=128, help="Number of simultaneous states to be explored in the FMC lookahead search.")
parser.add_argument("--fmc-logit", action="store_true", help="Improve the task classifier by having it train on FMC data that's exploiting it's neurons like an adversarial setup.")
parser.add_argument("--fmc-steps", type=int, default=8, help="Number of simulation steps in the FMC lookahead search.")
parser.add_argument("--fmc-random-policy", action="store_true", help="If true, FMC will not use the agent's policy, instead it will sample random actions.")
args = parser.parse_args().__dict__
args["tasks"] = list(args["tasks"])
main(**args)