Skip to content

Commit

Permalink
modular unit tests
Browse files Browse the repository at this point in the history
  • Loading branch information
serengil committed Dec 25, 2023
1 parent c9d1d1e commit 33c0b2c
Show file tree
Hide file tree
Showing 25 changed files with 549 additions and 426 deletions.
2 changes: 1 addition & 1 deletion .github/workflows/tests.yml
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ jobs:
- name: Test with pytest
run: |
cd tests
python global-unit-test.py
python -m pytest . -s --disable-warnings
linting:
needs: unit-tests

Expand Down
2 changes: 1 addition & 1 deletion Makefile
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
test:
cd tests && python global-unit-test.py
cd tests && python -m pytest . -s --disable-warnings

lint:
python -m pylint chefboost/ --fail-under=10
81 changes: 58 additions & 23 deletions chefboost/Chefboost.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@ def fit(
config: Optional[dict] = None,
target_label: str = "Decision",
validation_df: Optional[pd.DataFrame] = None,
silent: bool = False,
) -> Dict[str, Any]:
"""
Build (a) decision tree model(s)
Expand Down Expand Up @@ -55,6 +56,9 @@ def fit(
if nothing is passed to validation data frame, then the function validates
built trees for training data frame
silent (bool): set this to True if you do not want to see
any informative logs
Returns:
chefboost model
"""
Expand Down Expand Up @@ -139,7 +143,8 @@ def fit(

if enableParallelism == True:
num_cores = config["num_cores"]
logger.info(f"[INFO]: {num_cores} CPU cores will be allocated in parallel running")
if silent is False:
logger.info(f"[INFO]: {num_cores} CPU cores will be allocated in parallel running")

from multiprocessing import set_start_method, freeze_support

Expand Down Expand Up @@ -169,7 +174,8 @@ def fit(
config["algorithm"] = "Regression"

if enableGBM == True:
logger.info("Gradient Boosting Machines...")
if silent is False:
logger.info("Gradient Boosting Machines...")
algorithm = "Regression"
config["algorithm"] = "Regression"

Expand All @@ -184,7 +190,8 @@ def fit(

# -------------------------

logger.info(f"{algorithm} tree is going to be built...")
if silent is False:
logger.info(f"{algorithm} tree is going to be built...")

# initialize a dictionary. this is going to be used to check features numeric or nominal.
# numeric features should be transformed to nominal values based on scales.
Expand Down Expand Up @@ -212,7 +219,13 @@ def fit(

if enableAdaboost == True:
trees, alphas = adaboost_clf.apply(
df, config, header, dataset_features, validation_df=validation_df, process_id=process_id
df,
config,
header,
dataset_features,
validation_df=validation_df,
process_id=process_id,
silent=silent,
)

elif enableGBM == True:
Expand All @@ -224,6 +237,7 @@ def fit(
dataset_features,
validation_df=validation_df,
process_id=process_id,
silent=silent,
)
# classification = True

Expand All @@ -235,12 +249,19 @@ def fit(
dataset_features,
validation_df=validation_df,
process_id=process_id,
silent=silent,
)
# classification = False

elif enableRandomForest == True:
trees = randomforest.apply(
df, config, header, dataset_features, validation_df=validation_df, process_id=process_id
df,
config,
header,
dataset_features,
validation_df=validation_df,
process_id=process_id,
silent=silent,
)
else: # regular decision tree building
root = 1
Expand All @@ -264,22 +285,23 @@ def fit(
main_process_id=process_id,
)

logger.info("-------------------------")
logger.info(f"finished in {time.time() - begin} seconds")
if silent is False:
logger.info("-------------------------")
logger.info(f"finished in {time.time() - begin} seconds")

obj = {"trees": trees, "alphas": alphas, "config": config, "nan_values": nan_values}

# -----------------------------------------

# train set accuracy
df = base_df.copy()
evaluate(obj, df, task="train")
trainset_evaluation = evaluate(obj, df, task="train", silent=silent)
obj["evaluation"] = {"train": trainset_evaluation}

# validation set accuracy
if isinstance(validation_df, pd.DataFrame):
evaluate(obj, validation_df, task="validation")

# -----------------------------------------
validationset_evaluation = evaluate(obj, validation_df, task="validation", silent=silent)
obj["evaluation"]["validation"] = validationset_evaluation

return obj

Expand Down Expand Up @@ -455,31 +477,38 @@ def restoreTree(module_name) -> Any:
return functions.restoreTree(module_name)


def feature_importance(rules: Union[str, list]) -> pd.DataFrame:
def feature_importance(rules: Union[str, list], silent: bool = False) -> pd.DataFrame:
"""
Show the feature importance values of a built model
Args:
rules (str or list): e.g. decision_rules = "outputs/rules/rules.py"
rules (str or list): e.g. decision_rules = "outputs/rules/rules.py"
or this could be retrieved from built model as shown below.
decision_rules = []
for tree in model["trees"]:
rule = .__dict__["__spec__"].origin
decision_rules.append(rule)
```python
decision_rules = []
for tree in model["trees"]:
rule = .__dict__["__spec__"].origin
decision_rules.append(rule)
```
silent (bool): set this to True if you do want to see
any informative logs.
Returns:
feature importance (pd.DataFrame)
"""

if not isinstance(rules, list):
rules = [rules]
logger.info(f"rules: {rules}")

if silent is False:
logger.info(f"rules: {rules}")

# -----------------------------

dfs = []

for rule in rules:
logger.info("Decision rule: {rule}")
if silent is False:
logger.info(f"Decision rule: {rule}")

with open(rule, "r", encoding="UTF-8") as file:
lines = file.readlines()
Expand Down Expand Up @@ -564,17 +593,23 @@ def feature_importance(rules: Union[str, list]) -> pd.DataFrame:


def evaluate(
model: dict, df: pd.DataFrame, target_label: str = "Decision", task: str = "test"
) -> None:
model: dict,
df: pd.DataFrame,
target_label: str = "Decision",
task: str = "test",
silent: bool = False,
) -> dict:
"""
Evaluate the performance of a built model on a data set
Args:
model (dict): built model which is the output of fit function
df (pandas data frame): data frame you would like to evaluate
target_label (str): target label
task (string): set this to train, validation or test
silent (bool): set this to True if you do not want to see
any informative logs
Returns:
None
evaluation results (dict)
"""

# --------------------------
Expand All @@ -598,4 +633,4 @@ def evaluate(
df["Decision"] = df["Decision"].astype(str)
df["Prediction"] = df["Prediction"].astype(str)

cb_eval.evaluate(df, task=task)
return cb_eval.evaluate(df, task=task, silent=silent)
90 changes: 67 additions & 23 deletions chefboost/commons/evaluate.py
Original file line number Diff line number Diff line change
@@ -1,30 +1,44 @@
import math
import pandas as pd
from chefboost.commons.logger import Logger

# pylint: disable=broad-except

logger = Logger(module="chefboost/commons/evaluate.py")


def evaluate(df, task="train"):
def evaluate(df: pd.DataFrame, task: str = "train", silent: bool = False) -> dict:
"""
Evaluate results
Args:
df (pd.DataFrame): data frame
task (str): train, test
silent (bool): set this to True if you do not want to
see any informative logs
Returns:
evaluation results (dict)
"""
if df["Decision"].dtypes == "object":
problem_type = "classification"
else:
problem_type = "regression"

# -------------------------------------

evaluation_results = {}
instances = df.shape[0]

logger.info("-------------------------")
logger.info(f"Evaluate {task} set")
logger.info("-------------------------")
if silent is False:
logger.info("-------------------------")
logger.info(f"Evaluate {task} set")
logger.info("-------------------------")

if problem_type == "classification":
idx = df[df["Prediction"] == df["Decision"]].index
accuracy = 100 * len(idx) / df.shape[0]
logger.info(f"Accuracy: {accuracy}% on {instances} instances")
if silent is False:
logger.info(f"Accuracy: {accuracy}% on {instances} instances")

evaluation_results["Accuracy"] = accuracy
evaluation_results["Instances"] = instances
# -----------------------------

predictions = df.Prediction.values
Expand All @@ -48,8 +62,12 @@ def evaluate(df, task="train"):
confusion_row.append(item)
confusion_matrix.append(confusion_row)

logger.info(f"Labels: {labels}")
logger.info(f"Confusion matrix: {confusion_matrix}")
if silent is False:
logger.info(f"Labels: {labels}")
logger.info(f"Confusion matrix: {confusion_matrix}")

evaluation_results["Labels"] = labels
evaluation_results["Confusion matrix"] = confusion_matrix

# -----------------------------
# precision and recall
Expand Down Expand Up @@ -79,11 +97,19 @@ def evaluate(df, task="train"):
accuracy = round(100 * (tp + tn) / (tp + tn + fp + fn + epsilon), 4)

if len(labels) >= 3:
logger.info(f"Decision {decision_class}")
logger.info(f"Accuray: {accuracy}")
if silent is False:
logger.info(f"Decision {decision_class}")
logger.info(f"Accuracy: {accuracy}")

evaluation_results[f"Decision {decision_class}'s Accuracy"] = accuracy

logger.info(f"Precision: {precision}%, Recall: {recall}%, F1: {f1_score}%")
logger.debug(f"TP: {tp}, TN: {tn}, FP: {fp}, FN: {fn}")
if silent is False:
logger.info(f"Precision: {precision}%, Recall: {recall}%, F1: {f1_score}%")
logger.debug(f"TP: {tp}, TN: {tn}, FP: {fp}, FN: {fn}")

evaluation_results["Precision"] = precision
evaluation_results["Recall"] = recall
evaluation_results["F1"] = f1_score

if len(labels) < 3:
break
Expand All @@ -99,13 +125,17 @@ def evaluate(df, task="train"):

if instances > 0:
mae = df["Absolute_Error"].sum() / instances
logger.info(f"MAE: {mae}")

mse = df["Absolute_Error_Squared"].sum() / instances
logger.info(f"MSE: {mse}")

rmse = math.sqrt(mse)
logger.info(f"RMSE: {rmse}")

evaluation_results["MAE"] = mae
evaluation_results["MSE"] = mse
evaluation_results["RMSE"] = rmse

if silent is False:
logger.info(f"MAE: {mae}")
logger.info(f"MSE: {mse}")
logger.info(f"RMSE: {rmse}")

rae = 0
rrse = 0
Expand All @@ -122,12 +152,26 @@ def evaluate(df, task="train"):
except Exception as err:
logger.error(str(err))

logger.info(f"RAE: {rae}")
logger.info(f"RRSE {rrse}")
if silent is False:
logger.info(f"RAE: {rae}")
logger.info(f"RRSE {rrse}")

evaluation_results["RAE"] = rae
evaluation_results["RRSE"] = rrse

mean = df["Decision"].mean()
logger.info(f"Mean: {mean}")

if silent is False:
logger.info(f"Mean: {mean}")

evaluation_results["Mean"] = mean

if mean > 0:
logger.info(f"MAE / Mean: {100 * mae / mean}%")
logger.info(f"RMSE / Mean: {100 * rmse / mean}%")
if silent is False:
logger.info(f"MAE / Mean: {100 * mae / mean}%")
logger.info(f"RMSE / Mean: {100 * rmse / mean}%")

evaluation_results["MAE / Mean"] = 100 * mae / mean
evaluation_results["RMSE / Mean"] = 100 * rmse / mean

return evaluation_results
Loading

0 comments on commit 33c0b2c

Please sign in to comment.